
Algorithms Lecture 5: Hash Tables [Sp’17]

Insanity is repeating the same mistakes and expecting different results.

— Narcotics Anonymous (1981)

Calvin: There! I finished our secret code!
Hobbes: Let’s see.
Calvin: I assigned each letter a totally random number, so the code will be hard

to crack. For letter “A”, you write 3,004,572,688. “B” is 28,731,569½.
Hobbes: That’s a good code all right.
Calvin: Now we just commit this to memory.
Calvin: Did you finish your map of our neighborhood?
Hoobes: Not yet. How many bricks does the front walk have?

— Bill Watterson, “Calvin and Hobbes” (August 23, 1990)

[RFC 1149.5 specifies 4 as the standard IEEE-vetted random number.]

— Randall Munroe, xkcd (http://xkcd.com/221/)
Reproduced under a Creative Commons Attribution-NonCommercial 2.5 License

5 Hash Tables

5.1 Introduction

A hash table is a data structure for storing a set of items, so that we can quickly determine
whether an item is or is not in the set. The basic idea is to pick a hash function h that maps
every possible item x to a small integer h(x). Then we store x in an array at index h(x); the
array itself is the hash table.

Let’s be a little more specific. We want to store a set of n items. Each item is an element of
a fixed set U called the universe; we use u to denote the size of the universe, which is just the
number of items in U. A hash table is an array T[1 .. m], where m is another positive integer,
which we call the table size. Typically, m is much smaller than u. A hash function is any function
of the form

h: U→ {0, 1, . . . , m− 1},

mapping each possible item in U to a slot in the hash table. We say that an item x hashes to the
slot T[h(x)].

Of course, if u= m, we can always just use the trivial hash function h(x) = x; in other words,
we can use the item itself as the index into the table. The resulting data structure is called a
direct access table, or more commonly, an array. In most applications, however, this approach
requires much more space than we can reasonably allocate. On the other hand, we rarely need
need to store more than a tiny fraction of U. Ideally, the table size m should be roughly equal to
the number n of items we actually need to store, not the number of items that we might possibly
store.

The downside of using a smaller table is that we must deal with collisions. We say that two
items x and y collide if their hash values are equal: h(x) = h(y). We are now left with two
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different (but interacting) design decisions. First, how to we choose a hash function h that can
be evaluated quickly and that results in as few collisions as possible? Second, when collisions do
occur, how do we resolve them?

5.2 The Importance of Being Random

If we already knew the precise data set that would be stored in our hash table, it is possible (but
not particularly easy) to find a perfect hash function that avoids collisions entirely. Unfortunately,
for most applications of hashing, we don’t know in advance what the user will put into the table.
Thus, it is impossible, even in principle, to devise a perfect hash function in advance; no matter
what hash function we choose, some pair of items from U must collide. In fact, for any fixed
hash function, there is a subset of at least |U|/m items that all hash to the same location. If
our input data happens to come from such a subset, either by chance or malicious intent, our
code will come to a grinding halt. This is a real security issue with core Internet routers, for
example; every router on the Internet backbone survives millions of attacks per day, including
timing attacks, from malicious agents.

The only way to provably avoid this worst-case behavior is to choose our hash functions
randomly. Specifically, we will fix a set MB+ of functions from U to {0,1, . . . , m − 1}, and
then at run time, we choose our hash function randomly from the set MB+ according to some
fixed distribution. Different sets MB+ and different distributions over that set imply different
theoretical guarantees. Screw this into your brain:

Input data is not random!
So good hash functions must be random!

In particular, the simple deterministic hash function h(x) = x mod m, which is often taught
and recommended under the name “the division method”, is utterly stupid. Many textbooks
correctly observe that this hash function is bad when m is a power of 2, because then h(x) is
just the low-order bits of m, but then they bizarrely recommend making m prime to avoid such
obvious collisions. But even when m is prime, any pair of items whose difference is an integer
multiple of m collide with absolute certainty; for all integers a and x , we have h(x + am) = h(x).
Why would anyone use a hash function where they know certain pairs of keys always collide?
That’s just crazy!

5.3 ...But Not Too Random

Most theoretical analysis of hashing assumes ideal random hash functions. Ideal randomness
means that the hash function is chosen uniformly at random from the set of all functions from
U to {0,1, . . . , m− 1}. Intuitively, for each new item x , we roll a new m-sided die to determine
the hash value h(x). Ideal randomness is a clean theoretical model, which provides the strongest
possible theoretical guarantees.

Unfortunately, ideal random hash functions are a theoretical fantasy; evaluating such a
function would require recording values in a separate data structure which we could access using
the items in our set, which is exactly what hash tables are for! So instead, we look for families of
hash functions with just enough randomness to guarantee good performance. Fortunately, most
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hashing analysis does not actually require ideal random hash functions, but only some weaker
consequences of ideal randomness.

One property of ideal random hash functions that seems intuitively useful is uniformity. A
family H of hash functions is uniform if choosing a hash function uniformly at random from H

makes every hash value equally likely for every item in the universe:

Uniform: Pr
h∈H

�

h(x) = i
�

=
1
m

for all x and all i

We emphasize that this condition must hold for every item x ∈ U and every index i. Only the
hash function h is random.

In fact, despite its intuitive appeal, uniformity is not terribly important or useful by itself.
Consider the family K of constant hash functions defined as follows. For each integer a
between 0 and m− 1, let consta denote the constant function consta(x) = a for all x , and let
K = {consta | 0 ≤ a ≤ m− 1} be the set of all such functions. It is easy to see that the set K is
both perfectly uniform and utterly useless!

A much more important goal is to minimize the number of collisions. A family of hash
functions is universal if, for any two items in the universe, the probability of collision is as small
as possible:

Universal: Pr
h∈H

�

h(x) = h(y)
�

≤
1
m

for all x 6= y

(Trivially, if x = y , then Pr[h(x) = h(y)] = 1!) Again, we emphasize that this equation must hold
for every pair of distinct items; only the function h is random. The family of constant functions
is uniform but not universal; on the other hand, universal hash families are not necessarily
uniform.1

Most elementary hashing analysis requires a weaker versions of universality. A family of hash
functions is near-universal if the probability of collision is close to ideal:

Near-universal: Pr
h∈H

�

h(x) = h(y)
�

≤
2
m

for all x 6= y

There’s nothing special about the number 2 in this definition; any other explicit constant will do.
On the other hand, some hashing analysis requires reasoning about larger sets of collisions.

For any integer k, we say that a family of hash functions is strongly k-universal or k-uniform if
for any sequence of k disjoint keys and any sequence of k hash values, the probability that each
key maps to the corresponding hash value is 1/mk:

k-uniform: Pr
h∈H

�

k
∧

j=1
h(x j) = i j

�

=
1

mk
for all distinct x1, . . . , xk and all i1, . . . , ik

Ideal random hash functions are k-uniform for every positive integer k.

1Confusingly, universality is often called the uniform hashing assumption, even though it is not an assumption
that the hash function is uniform.
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5.4 Chaining

One of the most common methods for resolving collisions in hash tables is called chaining. In a
chained hash table, each entry T[i] is not just a single item, but rather (a pointer to) a linked list
of all the items that hash to T[i]. Let `(x) denote the length of the list T[h(x)]. To see if an item
x is in the hash table, we scan the entire list T[h(x)]. The worst-case time required to search
for x is O(1) to compute h(x) plus O(1) for every element in T[h(x)], or O(1+ `(x)) overall.
Inserting and deleting x also take O(1+ `(x)) time.

G H

M I T

R O

S

A L

A chained hash table with load factor 1.

Let’s compute the expected value of `(x) under this assumption; this will immediately imply
a bound on the expected time to search for an item x . To be concrete, let’s suppose that x is not
already stored in the hash table. For all items x and y , we define the indicator variable

Cx ,y =
�

h(x) = h(y)
�

.

(In case you’ve forgotten the bracket notation, Cx ,y = 1 if h(x) = h(y) and Cx ,y = 0 if
h(x) 6= h(y).) Since the length of T[h(x)] is precisely equal to the number of items that collide
with x , we have

`(x) =
∑

y∈T

Cx ,y .

Assuming h is chosen from a universal set of hash functions, we have

E[Cx ,y] = Pr[Cx ,y = 1] =

¨

1 if x = y

1/m otherwise

Now we just have to grind through the definitions.

E[`(x)] =
∑

y∈T

E[Cx ,y] =
∑

y∈T

1
m
=

n
m

We call this fraction n/m the load factor of the hash table. Since the load factor shows up
everywhere, we will give it its own symbol α.

α :=
n
m

Similarly, if h is chosen from a near-universal set of hash functions, then E[`(x)]≤ 2α. Thus, the
expected time for an unsuccessful search in a chained hash table, using near-universal hashing, is
Θ(1+α). As long as the number of items n is only a constant factor bigger than the table size m,
the search time is a constant. A similar analysis gives the same expected time bound (with a
slightly smaller constant) for a successful search.

Obviously, linked lists are not the only data structure we could use to store the chains; any
data structure that can store a set of items will work. For example, if the universe U has a total
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ordering, we can store each chain in a balanced binary search tree. This reduces the expected
time for any search to O(1+ log`(x)), and assuming near-universal hashing, the expected time
for any search is O(1+ logα).

Another natural possibility is to work recursively! Specifically, for each T[i], we maintain a
hash table Ti containing all the items with hash value i. Collisions in those secondary tables are
resolved recursively, by storing secondary overflow lists in tertiary hash tables, and so on. The
resulting data structure is a tree of hash tables, whose leaves correspond to items that (at some
level of the tree) are hashed without any collisions. If every hash table in this tree has size m,
then the expected time for any search is O(logm n). In particular, if we set m=

p
n, the expected

time for any search is constant. On the other hand, there is no inherent reason to use the same
hash table size everywhere; after all, hash tables deeper in the tree are storing fewer items.

Caveat Lector! The preceding analysis does not imply that the expected worst-case search
time is constant! The expected worst-case search time is O(1 + L), where L = maxx `(x).
Even with ideal random hash functions, the maximum list size L is very likely to grow faster
than any constant, unless the load factor α is significantly smaller than 1. For example,
E[L] = Θ(log n/ log log n) when α= 1. We’ve stumbled on a powerful but counterintuitive fact
about probability: When several individual items are distributed independently and uniformly at
random, the overall distribution of those items is almost never uniform in the traditional sense!
Later in this lecture, I’ll describe how to achieve constant expected worst-case search time using
secondary hash tables.

5.5 Multiplicative Hashing

Arguably the simplest technique for near-universal hashing, first described by Lawrence Carter
and Mark Wegman in the late 1970s, is called multiplicative hashing. I’ll describe two variants
of multiplicative hashing, one using modular arithmetic with prime numbers, the other using
modular arithmetic with powers of two. In both variants, a hash function is specified by an
integer parameter a, called a salt. The salt is chosen uniformly at random when the hash table is
created and remains fixed for the entire lifetime of the table. All probabilities are defined with
respect to the random choice of salt.

For any non-negative integer n, let [n] denote the n-element set {0,1, . . . , n−1}, and let [n]+

denote the (n− 1)-element set {1,2, . . . , n− 1}.

5.5.1 Prime multiplicative hashing

The first family of multiplicative hash function is defined in terms of a prime number p > |U|.
For any integer a ∈ [p]+, define a function multpa : U→ [m] by setting

multpa(x) = (ax mod p)mod m

and let
MP :=

�

multpa

�

� a ∈ [p]+
	

denote the set of all such functions. Here, the integer a is the salt for the hash function multpa.
We claim that this family of hash functions is near-universal.

The use of prime modular arithmetic is motivated by the fact that division modulo prime
numbers is well-defined.

Lemma 1. For every integer a ∈ [p]+, there is a unique integer z ∈ [p]+ such that az mod p = 1.
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Proof: Fix an arbitrary integer a ∈ [p]+.
Suppose az mod p = az′ mod p for some integers z, z′ ∈ [p]+. We immediately have

a(z−z′)mod p = 0, which implies that a(z−z′) is divisible by p. Because p is prime, the inequality
1≤ a ≤ p− 1 implies that z − z′ must be divisible by p. Similarly, because 1≤ z, z′ ≤ p− 1, we
have 2− p ≤ z − z′ ≤ p− 2, which implies that z = z′. It follows that for each integer h ∈ [p]+,
there is at most one integer z ∈ [p]+ such that az mod p = h.

Similarly, if az mod p = 0 for some integer z ∈ [p]+, then because p is prime, either a or z is
divisible by p, which is impossible.

We conclude that the set {az mod p | z ∈ [p]+} has exactly p− 1 distinct elements, all non-
zero, and therefore is equal to [p]+. In other words, multiplication by a defines a permutation of
[p]+. The lemma follows immediately. �

Let a−1 denote the multiplicative inverse of a, as guaranteed by the previous lemma. We can
now precisely characterize when the hash values of two items collide.

Lemma 2. For any elements a, x , y ∈ [p]+, we have a collision multpa(x) = multpa(y) if and
only if either x = y or multpa((x − y)mod p) = 0 or multpa((y − x)mod p) = 0.

Proof: Fix three arbitrary elements a, x , y ∈ [p]+. There are three cases to consider, depending
on whether ax mod p is greater than, less than, or equal to a y mod p.

First, suppose ax mod p = a y mod p. Then x = a−1ax mod p = a−1a y mod p = y, which
implies that x = y . (This is the only place we need primality.)

Next, suppose ax mod p > a y mod p. We immediately observe that

ax mod p− a y mod p = (ax − a y)mod p = a(x − y)mod p.

Straightforward algebraic manipulation now implies that multpa(x) =multpa(y) if and only if
multpa((x − y)mod p) = 0.

multpa(x) =multpa(y) ⇐⇒ (ax mod p)mod m= (a y mod p)mod m

⇐⇒ (ax mod p)− (a y mod p)≡ 0 (mod m)

⇐⇒ a(x − y)mod p ≡ 0 (mod m)

⇐⇒ multpa((x − y)mod p) = 0

Finally, if ax mod p < a y mod p, an argument similar to the previous case implies that
multpa(x) =multpa(y) if and only if multpa((y − x)mod p) = 0. �

For any distinct integers x , y ∈ U, Lemma ?? immediately implies that

Pra

�

multpa(x) =multpa(y)
�

≤ Pra

�

multpa((x − y)mod p) = 0
�

+ Pra

�

multpa((y − x)mod p) = 0
�

.

Thus, to show that MP is near-universal, it suffices to prove the following lemma.

Lemma 3. For any integer z ∈ [p]+, we have Pra[multpa(z) = 0]≤ 1/m.

Proof: Fix an arbitrary integer z ∈ [p]+. Lemma 1 implies that for any integer h ∈ [p]+, there is
a unique integer a ∈ [p]+ such that (az mod p) = h; specifically, a = h · z−1 mod p. There are
exactly b(p − 1)/mc integers k such that 1 ≤ km ≤ p − 1. Thus, there are exactly b(p − 1)/mc
salts a such that multpa(z) = 0. �
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Our analysis of collision probability can be improved, but only slightly. Carter and Wegman
observed that if p mod (m+1) = 1, then Pra[multpa(1) =multpa(m+ 1)] = 2/(m+ 1). (For any
positive integer m, there are infinitely many primes p such that p mod (m+ 1) = 1.) For example,
by enumerating all possible values of multpa(x) when p = 5 and m= 3, we immediately observe
that Pra[multpa(1) =multpa(4)] = 1/2= 2/(m+ 1)> 1/3.

1 2 3 4

0 0 0 0 0

1 1 2 0 1

2 2 1 1 0

3 0 1 1 2

4 1 0 2 1

5.5.2 Actually universal hashing

Our first example of a truly universal family of hash functions uses a small modification of
the multiplicative method we just considered. For any integers a ∈ [p]+ and b ∈ [p], let
ha,b : U→ [m] be the function

ha,b(x) = ((ax + b)mod p)mod m

and let
MB+ :=

�

ha,b

�

� a ∈ [p]+, b ∈ [p]
	

denote the set of all p(p − 1) such functions. A function in this family is specified by two salt
parameters a and b.

Theorem 1. MB+ is universal.

Proof: Fix four integers r, s, x , y ∈ [p] such that x 6= y and r 6= s. The linear system

ax + b ≡ r (mod p)

a y + b ≡ s (mod p)

has a unique solution a, b ∈ [p] with a 6= 0, namely

a = (r − s)(x − y)−1 mod p

b = (sx − r y)(x − y)−1 mod p

where z−1 denotes the mod-p multiplicative inverse of z, as guaranteed by Lemma 1. It follows
that

Pr
a,b

�

(ax + b)mod p = r and (a y + b)mod p = s
�

=
1

p(p− 1)
,

and therefore
Pr
a,b

�

ha,b(x) = ha,b(y)
�

=
N

p(p− 1)
,

where N is the number of ordered pairs (r, s) ∈ [p]2 such that r 6= s but r mod m = s mod m.
For each fixed r ∈ [p], there are at most bp/mc integers s ∈ [p] such that r 6= s but r mod m=
s mod m. Because p is prime, we have bp/mc ≤ (p− 1)/m. We conclude that N ≤ p(p− 1)/m,
which completes the proof. �
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More careful analysis implies that the collision probability for any pair of items is exactly

(p− p mod m)(p− (m− p mod m))
mp(p− 1)

.

Because p is prime, we must have 0 < p mod m < m, so this probability is actually strictly less
than 1/m. For example, when p = 5 and m= 3, the collision probability is

(5− 5 mod 3)(5− (3− 5 mod 3))
3 · 4 · 5

=
1
5
<

1
3

,

which we can confirm by enumerating all possible values:

b = 0

1 2 3 4

0 0 0 0 0

1 1 2 0 1

2 2 1 1 0

3 0 1 1 2

4 1 0 2 1

b = 1

1 2 3 4

1 1 1 1 1

1 2 0 1 0

2 0 0 2 1

3 1 2 0 0

4 0 1 0 2

b = 2

1 2 3 4

0 2 2 2 2

1 0 1 0 1

2 1 1 0 0

3 0 0 1 1

4 1 0 1 0

b = 3

1 2 3 4

0 0 0 0 0

1 1 0 1 2

2 0 2 1 1

3 1 1 2 0

4 2 1 0 1

b = 4

1 2 3 4

0 1 1 1 1

1 0 1 2 0

2 1 0 0 2

3 2 0 0 1

4 0 2 1 0

5.5.3 Binary multiplicative hashing

A slightly simpler variant of multiplicative hashing that avoids the need for large prime numbers
was first formally analyzed by Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and
Martti Penttonen in 1997, although it was proposed decades earlier. For this variant, we assume
that U= [2w] and that m= 2` for some integers w and `. Thus, our goal is to hash w-bit integers
(“words”) to `-bit integers (“labels”).

For any odd integer a ∈ [2w], we define the hash function multba : U→ [m] as follows:

multba(x) :=
�

(a · x)mod 2w

2w−`

�

Again, the odd integer a is the salt.

 ℓ 

2w  

w x

a

a⋅x

ha(x)

w 

Binary multiplicative hashing.

If we think of any w-bit integer z as an array of bits z[0 .. w− 1], where z[0] is the least
significant bit, this function has an easy interpretation. The product a · x is 2w bits long; the
hash value multba(x) consists of the top ` bits of the bottom half:

multba(x) := (a · x)[w− 1 .. w− `]
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Most programming languages automatically perform integer arithmetic modulo some power of
two. If we are using an integer type with w bits, the function multba(x) can be implemented by
a single multiplication followed by a single right-shift. For example, in C:

#define hash(a,x) ((a)*(x) >> (WORDSIZE-HASHBITS))

Nowwe claim that the familyMB := {multba | a is odd} of all such functions is near-universal.
To prove this claim, we again need to argue that division is well-defined, at least for a large
subset of possible words. Let W denote the set of odd integers in [2w].

Lemma 4. For any integers x , z ∈W , there is exactly one integer a ∈W such that ax mod 2w = z.

Proof: Fix an integer x ∈ W . Suppose ax mod 2w = bx mod 2w for some integers a, b ∈ W .
Then (b − a)x mod 2w = 0, which means x(b − a) is divisible by 2w. Because x is odd, b − a
must be divisible by 2w. But −2w < b− a < 2w, so a and b must be equal. Thus, for each z ∈W ,
there is at most one a ∈W such that ax mod 2w = z. In other words, the function fx : W →W
defined by fx(a) := ax mod 2w is injective. Every injective function from a finite set to itself is a
bijection. �

Theorem 2. MB is near-universal.

Proof: Fix two distinct words x , y ∈ U such that x < y. If multba(x) = multba(y), then the
top ` bits of a(y − x)mod 2w are either all 0s (if ax mod 2w ≤ a y mod 2w) or all 1s (otherwise).
Equivalently, if multba(x) =multba(y), then either multba(y − x) = 0 or multba(y − x) = m−1.
Thus,

Pr[multba(x) =multba(y)] ≤ Pr[multba(y − x) = 0] + Pr[multba(y − x) = m− 1].

We separately bound the terms on the right side of this inequality.
Because x 6= y , we can write (y − x)mod 2w = q2r for some odd integer q and some integer

0≤ r ≤ w−1. The previous lemma implies that aq mod 2w consists of w−1 random bits followed
by a 1. Thus, aq2r mod 2w consists of w− r − 1 random bits, followed by a 1, followed by r 0s.
There are three cases to consider:

• If r < w− `, then multba(y − x) consists of ` random bits, so

Pr[multba(y − x) = 0] = Pr[multba(y − x) = m− 1] = 1/2`.

• If r = w− `, then multba(y − x) consists of `− 1 random bits followed by a 1, so

Pr[multba(y − x) = 0] = 0 and Pr[multba(y − x) = m− 1] = 2/2`.

• Finally, if r < w− `, then multba(y − x) consists of zero or more random bits, followed by
a 1, followed by one or more 0s, so

Pr[multba(y − x) = 0] = Pr[multba(y − x) = m− 1] = 0.

In all cases, we have Pr[multba(x) =multba(y)]≤ 2/2`, as required. �
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5.6 High Probability Bounds: Balls and Bins?

Although any particular search in a chained hash tables requires only constant expected time, but
what about the worst search time? Assuming that we are using ideal random hash functions,
this question is equivalent to the following more abstract problem. Suppose we toss n balls
independently and uniformly at random into one of n bins. Can we say anything about the
number of balls in the fullest bin?

Lemma 5. If n balls are thrown independently and uniformly into n bins, then with high
probability, the fullest bin contains O(log n/ log log n) balls.

Proof: Let X j denote the number of balls in bin j, and let X̂ =max j X j be the maximum number
of balls in any bin. Clearly, E[X j] = 1 for all j.

Now consider the probability that bin j contains at least k balls. There are
�n

k

�

choices for
those k balls, and the probability of any particular subset of k balls landing in bin j is 1/nk, so
the union bound (Pr[A∨ B]≤ Pr[A] + Pr[B] for any events A and B) implies

Pr[X j ≥ k] ≤
�

n
k

��

1
n

�k

≤
nk

k!

�

1
n

�k

=
1
k!

.

Setting k = 2c lg n/ lg lg n, we have

k!≥ kk/2 =
�

2c lg n
lg lg n

�2c lg n/ lg lg n

≥
�p

lg n
�2c lg n/ lg lg n

= 2c lg n = nc ,

which implies that

Pr
�

X j ≥
2c lg n
lg lg n

�

<
1
nc

.

This probability bound holds for every bin j. Thus, by the union bound, we conclude that

Pr
�

max
j

X j >
2c lg n
lg lg n

�

= Pr
�

X j >
2c lg n
lg lg n

for all j
�

≤
n
∑

j=1

Pr
�

X j >
2c lg n
lg lg n

�

<
1

nc−1
. �

A somewhat more complicated argument implies that if we throw n balls randomly into n
bins, then with high probability, the fullest bin contains at least Ω(log n/ log log n) balls.

However, if we make the hash table sufficiently large, we can expect every ball to land in its
own bin. Suppose there are m bins. Let Ci j be the indicator variable that equals 1 if and only
if i 6= j and ball i and ball j land in the same bin, and let C =

∑

i< j Ci j be the total number of
pairwise collisions. Since the balls are thrown uniformly at random, the probability of a collision
is exactly 1/m, so E[C] =

�n
2

�

/m. In particular, if m = n2, the expected number of collisions is
less than 1/2, and thus by Markov’s inequality, the probability of getting even one collision is less
than 1/2.

We can give a slightly weaker version of this bound that assumes only near-universal hashing.
Suppose we hash n items into a table of size m. Linearity of expectation implies that the expected
number of collisions is

∑

x<y

Pr[h(x) = h(y)]≤
�

n
2

�

2
m
=

n(n− 1)
m

.

In particular, if we set m = 2n2, the expected number of collisions is less than 1/2. Again,
Markov’s inequality implies that the probability of even one collision is less than 1/2.

If we make the hash table slightly larger, we can even prove a high-probability bound.

10
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Lemma 6. For any ε > 0, if n balls are thrown independently and uniformly into n2+ε bins,
then with high probability, no bin contains more than one ball.

Proof: Let X j denote the number of balls in bin j, as in the previous proof. We can easily
bound the probability that bin j is empty, by taking the two most significant terms in a binomial
expansion:

Pr[X j = 0] =
�

1−
1
m

�n

=
n
∑

i=1

�

n
i

��

−1
m

�i

= 1−
n
m
+Θ

�

n2

m2

�

> 1−
n
m

We can similarly bound the probability that bin j contains exactly one ball:

Pr[X j = 1] = n ·
1
m

�

1−
1
m

�n−1

=
n
m

�

1−
n− 1

m
+Θ

�

n2

m2

��

>
n
m
−

n(n− 1)
m2

It follows immediately that Pr[X j > 1] < n(n − 1)/m2. The union bound now implies that
Pr[X̂ > 1]< n(n− 1)/m. If we set m= n2+ε for any constant ε > 0, then the probability that no
bin contains more than one ball is at least 1− 1/nε. �

5.7 Perfect Hashing

So far we are faced with two alternatives. If we use a small hash table to keep the space usage
down, even if we use ideal random hash functions, the resulting worst-case expected search time
is Θ(log n/ log log n) with high probability, which is not much better than a binary search tree.
On the other hand, we can get constant worst-case search time, at least in expectation, by using
a table of roughly quadratic size, but that seems unduly wasteful.

Fortunately, there is a fairly simple way to combine these two ideas to get a data structure of
linear expected size, whose expected worst-case search time is constant. At the top level, we use
a hash table of size m= n and a near-universal hash function, but instead of linked lists, we use
secondary hash tables to resolve collisions. Specifically, the jth secondary hash table has size 2n2

j ,
where n j is the number of items whose primary hash value is j. Our earlier analysis implies that
with probability at least 1/2, the secondary hash table has no collisions at all, so the worst-case
search time in any secondary hash table is O(1). (If we discover a collision in some secondary
hash table, we can simply rebuild that table with a new near-universal hash function.)

Although this data structure apparently needs significantly more memory for each secondary
structure, the overall increase in space is insignificant, at least in expectation.

Lemma 7. Assuming near-universal hashing, we have E
�∑

i n2
i

�

< 3n.

Proof: let h(x) denote the position of x in the primary hash table. We can rewrite the sum
∑

i n2
i

in terms of the indicator variables [h(x) = i] as follows. The first equation uses the definition
of ni; the rest is just routine algebra.

∑

i

n2
i =

∑

i

�

∑

x

[h(x) = i]

�2

=
∑

i

�

∑

x

∑

y

[h(x) = i][h(y) = i]

�

11



Algorithms Lecture 5: Hash Tables [Sp’17]

=
∑

i

�

∑

x

[h(x) = i]2 + 2
∑

x<y

[h(x) = i][h(y) = i]

�

=
∑

x

∑

i

[h(x) = i]2 + 2
∑

x<y

∑

i

[h(x) = i][h(y) = i]

=
∑

x

∑

i

[h(x) = i] + 2
∑

x<y

[h(x) = h(y)]

The first sum is equal to n, because each item x hashes to exactly one index i, and the second
sum is just the number of pairwise collisions. Linearity of expectation immediately implies that

E

�

∑

i

n2
i

�

= n+ 2
∑

x<y

Pr[h(x) = h(y)] ≤ n+ 2 ·
n(n− 1)

2
·

2
n
= 3n− 2. �

This lemma immediately implies that the expected size of our two-level hash table is O(n).
By our earlier analysis, the expected worst-case search time is O(1).

5.8 Open Addressing

Another method used to resolve collisions in hash tables is called open addressing. Here, rather
than building secondary data structures, we resolve collisions by looking elsewhere in the table.
Specifically, we have a sequence of hash functions 〈h0, h1, h2, . . . , hm−1〉, such that for any item x ,
the probe sequence 〈h0(x), h1(x), . . . , hm−1(x)〉 is a permutation of 〈0,1, 2, . . . , m− 1〉. In other
words, different hash functions in the sequence always map x to different locations in the hash
table.

We search for x using the following algorithm, which returns the array index i if T[i] = x ,
‘absent’ if x is not in the table but there is an empty slot, and ‘full’ if x is not in the table and
there no no empty slots.

OpenAddressSearch(x):
for i← 0 to m− 1

if T[hi(x)] = x
return hi(x)

else if T[hi(x)] =∅
return ‘absent’

return ‘full’

The algorithm for inserting a new item into the table is similar; only the second-to-last line is
changed to T[hi(x)]← x . Notice that for an open-addressed hash table, the load factor is never
bigger than 1.

Just as with chaining, we’d like to pretend that the sequence of hash values is truly random,
for purposes of analysis. Specifically, most open-addressed hashing analysis uses the following
assumption, which is impossible to enforce in practice, but leads to reasonably predictive results
for most applications.

Strong uniform hashing assumption:

For each item x , the probe sequence 〈h0(x), h1(x), . . . , hm−1(x)〉 is
equally likely to be any permutation of the set {0,1, 2, . . . , m− 1}.

12
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Let’s compute the expected time for an unsuccessful search in light of this assupmtion.
Suppose there are currently n elements in the hash table. The strong uniform hashing assumption
has two important consequences:

• Uniformity: For each item x and index i, the hash value hi(x) is equally likely to be any
integer in the set {0,1, 2, . . . , m− 1}.

• Indpendence: For each item x , if we ignore the first probe h0(x), the remaining probe
sequence 〈h1(x), h2(x), . . . , hm−1(x)〉 is equally likely to be any permutation of the smaller
set {0, 1,2, . . . , m− 1} \ {h0(x)}.

Uniformity implies that the probability that T[h0(x)] is occupied is exactly n/m. Independence
implies that if T[h0(x)] is occupied, our search algorithm recursively searches the rest of the hash
table! Since the algorithm will never again probe T[h0(x)], for purposes of analysis, we might as
well pretend that slot in the table no longer exists. Thus, we get the following recurrence for the
expected number of probes, as a function of m and n:

E[T (m, n)] = 1+
n
m

E[T (m− 1, n− 1)].

The trivial base case is T (m, 0) = 1; if there’s nothing in the hash table, the first probe always
hits an empty slot. We can now easily prove by induction that E[T(m,n)] ≤ m/(m − n):

E[T (m, n)] = 1+
n
m

E[T (m− 1, n− 1)]

≤ 1+
n
m
·

m− 1
m− n

[induction hypothesis]

< 1+
n
m
·

m
m− n

[m− 1< m]

=
m

m− n
Ø [algebra]

Rewriting this in terms of the load factor α = n/m, we get E[T(m,n)] ≤ 1/(1− α). In other
words, the expected time for an unsuccessful search is O(1), unless the hash table is almost
completely full.

5.9 Linear and Binary Probing

In practice, however, we can’t generate ideal random probe sequences, so we must rely on a
simpler probing scheme to resolve collisions. Perhaps the simplest scheme is linear probing—use
a single hash function h(x) and define

hi(x) := (h(x) + i)mod m

This strategy has several advantages, in addition to its obvious simplicity. First, because the
probing strategy visits consecutive entries in the has table, linear probing exhibits better cache
performance than other strategies. Second, as long as the load factor is strictly less than 1,
the expected length of any probe sequence is provably constant; moreover, this performance is
guaranteed even for hash functions with limited independence. On the other hand, the number
or probes grows quickly as the load factor approaches 1, because the occupied cells in the hash
table tend to cluster together. On the gripping hand, this clustering is arguably an advantage of
linear probing, since any access to the hash table loads several nearby entries into the cache.

13
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A simple variant of linear probing called binary probing is slightly easier to analyze. Assume
that m= 2` for some integer ` (in a binary multiplicative hashing), and define

hi(x) := h(x)⊕ i

where ⊕ denotes bitwise exclusive-or. This variant of linear probing has slightly better cache
performance, because cache lines (and disk pages) usually cover address ranges of the form
[r2k .. (r + 1)2k − 1]; assuming the hash table is aligned in memory correctly, binary probing will
scan one entire cache line before loading the next one.

Several more complex probing strategies have been proposed in the literature. Two of
the most common are quadratic probing, where we use a single hash function h and set
hi(x) := (h(x) + i2)mod m, and double hashing, where we use two hash functions h and h′ and
set hi(x) := (h(x) + i · h′(x))mod m. These methods have some theoretical advantages over
linear and binary probing, but they are not as efficient in practice, primarily due to cache effects.

5.10 Analysis of Binary Probing?

Lemma 8. In a hash table of size m= 2` containing n≤ m/4 keys, built using binary probing,
the expected time for any search is O(1), assuming ideal random hashing.

Proof: The hash table is an array H[0 .. m−1]. For each integer k between 0 and `, we partition
H into m/2k level-k blocks of length 2k; each level-k block has the form H[c2k .. (c + 1)2k − 1]
for some integer c. Each level-k block contains exactly two level-(k− 1) blocks; thus, the blocks
implicitly define a complete binary tree of depth `.

Now suppose we want to search for a key x . For any integer k, let Bk(x) denote the range of
indices for the level-k block containing H[h(x)]:

Bk(x) =
�

2kbh(x)/2kc .. 2kbh(x)/2kc+ 2k − 1
�

Similarly, let B′k(x) denote the sibling of Bk(x) in the block tree; that is, B′k(x) = Bk+1(x)\ Bk(x).
We refer to each Bk(x) as an ancestor of x and each B′k(x) as an uncle of x . The proper ancestors
of any uncle of x are also proper ancestors of x .

x

B1(x)

B2(x)

B3(x)

B4(x)

B5(x) B5́(x)

B4́(x)

B3́(x)

B2́(x)

B1́(x)

B0́(x)
A conservative view of binary probing.

The binary probing algorithm can be recast conservatively as follows. First the algorithm
probes H[h(x)]; if that cell contains x or is empty, the algorithm halts. Then for each k from 0
to `− 1, the algorithm probes every cell in the uncle block B′k(x), and then halts if that block
contained either x or an empty cell. The actual binary probing algorithm probes the cells in
B′k(x) in a particular order and stops immediately when it finds either x or an empty cell, but for
purposes of proving an upper bound, let’s assume that the algorithm probes the entire block in
some arbitrary order.
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LooseBinaryProbe(x) :
if H[h(x)] = x

return True
if H[h(x)] is empty

return False
first← Dunno

for k← 0 to `− 1
for each index j ∈ B′k(x) in arbitrary order

if first 6= Dunno
if H[ j] = x

first← True
if H[ j] is empty

first← False

if first 6= Dunno
return first

return Full

For purposes of analysis, suppose the target item x is not in the table; the time to search for an
item that is in the table can only be faster.) The expected running time of LooseBinaryProbe(x)
can be expressed as follows:

E[T (x)]≤
`−1
∑

k=0

O(2k) · Pr[B′k(x) is full].

Assuming ideal random hashing, all blocks at the same level have equal probability of being full.
Let Fk denote the probability that B′k(x) (or any fixed level-k block) is full. Then we have

E[T (x)]≤
`−1
∑

k=0

O(2k) · Fk.

Call a level-k block B popular if there are at least 2k items y in the table such that h(y) ∈ B.
Every popular block is full, but full blocks are not necessarily popular.

If block Bk(x) is full but not popular, then Bk(x) contains at least one item whose hash value
is not in Bk(x). Let y be the first such item inserted into the hash table. When y was inserted,
some uncle block B′j(x) = B j(y) with j ≥ k was already full. Let B′j(x) be the first uncle of Bk(x)
to become full. The only blocks that can overflow into B j(y) are its uncles, which are all either
ancestors or uncles of Bk(x). But when B j(y) became full, no other uncle of Bk(x) was full.
Moreover, Bk(x) was not yet full (because there was still room for y), so no ancestor of Bk(x)
was full. It follows that B′j(x) is popular.

We conclude that if a block is full, then either that block or one of its uncles is popular. Thus,
if we write Pk to denote the probability that B′k(x) (or any fixed level-k block) is popular, we have

Fk ≤ 2Pk +
∑

j>k

Pj .

We can crudely bound the probability Pk as follows. Each of the n items in the table hashes into
a fixed level-k block with probability 2k/m; thus,

Pk =
�

n
2k

�

�

2k

m

�2k

≤
n2k

(2k)!
2k2k

m2k <
� en

m

�2k
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(The last inequality uses a crude form of Stirling’s approximation: n!> nn/en.) Our assumption
n ≤ m/4 implies the simpler inequality Pk < (e/4)2

k
. Because e < 4, it is easy to see that

Pk < 4−k for all sufficiently large k.
It follows that Fk = O(4−k), which implies that the expected search time is at most

∑

k≥0 O(2k)·
O(4−k) =

∑

k≥0 O(2−k) = O(1). �

In fact, we can prove the same expected time bound with a much weaker randomness
requirement.

Lemma 9. In a hash table of size m= 2` containing n≤ m/4 keys, built using binary probing,
the expected time for any search is O(1), assuming 5-uniform hashing.

Proof: Most of the previous proof carries through without modification; the only change is that
we need a different argument to bound the probability that B′k(x) is popular.

For each element y 6= x , we define an indicator variable Py := [h(y) ∈ B′k(x)]. The uniformity
of h implies that E[Py] = Pr[h(y) ∈ B′k(x)] = 2k/m, to simplify notation, let p = 2k/m. Now we
define a second indicator variable

Q y = Py − p =

¨

1− p if h(y) ∈ B′k(x)
−p otherwise

Linearity of expectation implies that E[Q y] = 0. Finally, define P =
∑

y 6=x Py andQ =
∑

y 6=x Q y =
P − E[P]; again, linearity of expectation gives us E[P] = p(n− 1) = 2k(n− 1)/m. We can bound
the probability that B′k(x) is popular in terms of these variables as follows:

Pr[B′k(x) is popular] = Pr[P ≥ 2k − 1] by definition of “popular”

= Pr[Q ≥ 2k − 1− 2k(n− 1)/m]

= Pr[Q ≥ 2k(1− n/m− 1/m)− 1]

≤ Pr[Q ≥ 2k(3/4− 1/m)− 1] because n≤ m/4

≤ Pr[Q ≥ 2k−1] because m≥ 4n≥ 4.

Now we do something that looks a little weird; instead of considering the variable Q directly,
we consider its fourth power. Because Q4 is non-negative, Markov’s inequality gives us

Pr[Q ≥ 2k−1] = Pr[Q4 ≥ 24(k−1)] ≤
E[Q4]
24(k−1)

Linearity of expectation implies

E[Q4] =
∑

y 6=x

∑

z 6=x

∑

y ′ 6=x

∑

z′ 6=x

E[Q yQzQ y ′Qz′].

Because h is 5-uniform, the random variables Q y are 4-independent. (We lose one level of
independence becauseQ y depends on both y and the fixed element x .) It follows that if y, z, y ′, z′

are all distinct, then E[Q yQzQ y ′Qz′] = E[Q y]E[Qz]E[Q y ′]E[Qz′] = 0. More generally, if any
one of y, z, y ′, z′ is different from the other three, then E[Q yQzQ y ′Qz′] = 0. The expectation
E[Q yQzQ y ′Qz′] is only non-zero when y = z = y ′ = z′, or when the values y, z, y ′, z′ consist of
two identical pairs.

E[Q4] =
∑

y

E[Q4
y] + 6

∑

y<z

E[Q2
y]E[Q

2
z]
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The definition of expectation implies

E[Q2
y] = p(1− p)2 + (1− p)(−p)2 = p(1− p) < p

and similarly

E[Q4
y] = p(1− p)4 + (1− p)(−p)4 = p(1− p)((1− p)3 + p3) < p.

It follows that

E[Q4]< (n− 1)p+ 6
�

n− 1
2

�

p2

<
mp
4
+ 3

�mp
4

�2

< 2k−2 + 3 · 22(k−2) < 22(k−1)

Putting all the pieces together, we conclude that Pr[B′k(x) is popular]≤ 2−2(k−1). The rest of the
proof is unchanged. �

5.11 Cuckoo Hashing

ÆÆÆ Write this.

Exercises

1. Your boss wants you to find a perfect hash function for mapping a known set of n items into
a table of size m. A hash function is perfect if there are no collisions; each of the n items
is mapped to a different slot in the hash table. Of course, a perfect hash function is only
possible if m≥ n. (This is a different definition of “perfect” than the one considered in the
lecture notes.) After cursing your algorithms instructor for not teaching you about (this
kind of) perfect hashing, you decide to try something simple: repeatedly pick ideal random
hash functions until you find one that happens to be perfect.

(a) Suppose you pick an ideal random hash function h. What is the exact expected
number of collisions, as a function of n (the number of items) and m (the size of the
table)? Don’t worry about how to resolve collisions; just count them.

(b) What is the exact probability that a random hash function is perfect?

(c) What is the exact expected number of different random hash functions you have to
test before you find a perfect hash function?

(d) What is the exact probability that none of the first N random hash functions you try is
perfect?

(e) How many ideal random hash functions do you have to test to find a perfect hash
function with high probability?

2. (a) Describe a set of hash functions that is uniform but not (near-)universal.

(b) Describe a set of hash functions that is universal but not (near-)uniform.

(c) Describe a set of hash functions that is universal but (near-)3-universal.
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(d) A family of hash function is pairwise independent if knowing the hash value of any
one item gives us absolutely no information about the hash value of any other item;
more formally,

Pr
h∈MB+

[h(x) = i | h(y) = j] = Pr
h∈MB+

[h(x) = i]

or equivalently,

Pr
h∈MB+

[(h(x) = i)∧ (h(y) = j)] = Pr
h∈MB+

[h(x) = i] · Pr
h∈MB+

[h(y) = j]

for all distinct items x 6= y and all (possibly equal) hash values i and j.
Describe a set of hash functions that is uniform but not pairwise independent.

(e) Describe a set of hash functions that is pairwise independent but not (near-)uniform.

(f) Describe a set of hash functions that is universal but not pairwise independent.

(g) Describe a set of hash functions that is pairwise independent but not (near-)uniform.

(h) Describe a set of hash functions that is universal and pairwise independent but not
uniform, or prove no such set exists.

3. (a) Prove that the set MB of binary multiplicative hash functions described in Section ??
is not uniform. [Hint: What is multba(0)?]

(b) Prove that MB is not pairwise independent. [Hint: Compare multba(0) and
multba(2w−1).]

(c) Consider the following variant of multiplicative hashing, which uses slightly longer
salt parameters. For any integers a, b ∈ [2w+`] where a is odd, let

ha,b(x) :=
�

(a · x + b)mod 2w+`
�

div 2w =

�

(a · x + b)mod 2w+`

2w

�

,

and let MB+ = {ha,b | a, b ∈ [2w+`] and a odd}. Prove that the family of hash
functions MB+ is strongly near-universal:

Pr
h∈MB+

�

(h(x) = i)∧ (h(y) = j)
�

≤
2

m2

for all items x 6= y and all (possibly equal) hash values i and j.

4. Suppose we are using an open-addressed hash table of size m to store n items, where
n≤ m/2. Assume an ideal random hash function. For any i, let X i denote the number of
probes required for the ith insertion into the table, and let X =maxi X i denote the length
of the longest probe sequence.

(a) Prove that Pr[X i > k]≤ 1/2k for all i and k.

(b) Prove that Pr[X i > 2 lg n]≤ 1/n2 for all i.

(c) Prove that Pr[X > 2 lg n]≤ 1/n.

(d) Prove that E[X ] = O(log n).
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