CS 373: Combinatorial Algorithms, Spring 1999 Final Exam (May 7, 1999)

Name:	
Net ID:	Alias:

This is a closed-book, closed-notes exam!
If you brought anything with you besides writing instruments and your two $8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}$ cheat sheets, please leave it at the front of the classroom.

- Print your name, netid, and alias in the boxes above, and print your name at the top of every page.
- Answer six of the seven questions on the exam. Each question is worth 10 points. If you answer every question, the one with the lowest score will be ignored. 1-unit graduate students must answer question \#7.
- Please write your answers on the front of the exam pages. Use the backs of the pages as scratch paper. Let us know if you need more paper.
- Read the entire exam before writing anything. Make sure you understand what the questions are asking. If you give a beautiful answer to the wrong question, you'll get no credit. If any question is unclear, please ask one of us for clarification.
- Don't spend too much time on any single problem. If you get stuck, move on to something else and come back later.
- Write something down for every problem. Don't panic and erase large chunks of work. Even if you think it's nonsense, it might be worth partial credit.

$\#$	Score	Grader
1		
2		
3		
4		
5		
6		
7		

1. Short Answer

sorting	induction	Master theorem	divide and conquer
randomized algorithm	amortization	brute force	hashing
binary search	depth-first search	splay tree	Fibonacci heap
convex hull	sweep line	minimum spanning tree	shortest paths
shortest path	adversary argument	NP-hard	reduction
string matching	evasive graph property	dynamic programming	H_{n}

Choose from the list above the best method for solving each of the following problems. We do not want complete solutions, just a short description of the proper solution technique! Each item is worth 1 point.
(a) Given a Champaign phone book, find your own phone number.
(b) Given a collection of n rectangles in the plane, determine whether any two intersect in $O(n \log n)$ time.
(c) Given an undirected graph G and an integer k, determine if G has a complete subgraph with k edges.
(d) Given an undirected graph G, determine if G has a triangle - a complete subgraph with three vertices.
(e) Prove that any n-vertex graph with minimum degree at least $n / 2$ has a Hamiltonian cycle.
(f) Given a graph G and three distinguished vertices u, v, and w, determine whether G contains a path from u to v that passes through w.
(g) Given a graph G and two distinguished vertices u and v, determine whether G contains a path from u to v that passes through at most 17 edges.
(h) Solve the recurrence $T(n)=5 T(n / 17)+O\left(n^{4 / 3}\right)$.
(i) Solve the recurrence $T(n)=1 / n+T(n-1)$, where $T(0)=0$.
(j) Given an array of n integers, find the integer that appears most frequently in the array.
(a) \qquad (f) \qquad
(b) \qquad (g) \qquad
(c)
(h) \qquad
(d) \qquad (i) \qquad
(e) \qquad (j)

2. Convex Layers

Given a set Q of points in the plane, define the convex layers of Q inductively as follows: The first convex layer of Q is just the convex hull of Q. For all $i>1$, the i th convex layer is the convex hull of Q after the vertices of the first $i-1$ layers have been removed.
Give an $O\left(n^{2}\right)$-time algorithm to find all convex layers of a given set of n points. [Partial credit for a correct slower algorithm; extra credit for a correct faster algorithm.]

A set of points with four convex layers.
3. Suppose you are given an array of n numbers, sorted in increasing order.
(a) [3 pts] Describe an $O(n)$-time algorithm for the following problem:

Find two numbers from the list that add up to zero, or report that there is no such pair. In other words, find two numbers a and b such that $a+b=0$.
(b) [7 pts] Describe an $O\left(n^{2}\right)$-time algorithm for the following problem:

Find three numbers from the list that add up to zero, or report that there is no such triple. In other words, find three numbers a, b, and c, such that $a+b+c=0$. [Hint: Use something similar to part (a) as a subroutine.]

4. Pattern Matching

(a) [4 pts] A cyclic rotation of a string is obtained by chopping off a prefix and gluing it at the end of the string. For example, ALGORITHM is a cyclic shift of RITHMALGO. Describe and analyze an algorithm that determines whether one string $P[1 . . \mathrm{m}]$ is a cyclic rotation of another string $T[1 . . n]$.
(b) [6 pts] Describe and analyze an algorithm that decides, given any two binary trees P and T, whether P equals a subtree of T. [Hint: First transform both trees into strings.]

P occurs exactly once as a subtree of T.

5. Two-stage Sorting

(a) [1 pt] Suppose we are given an array $A[1 . . n]$ of distinct integers. Describe an algorithm that splits A into n / k subarrays, each with k elements, such that the elements of each subarray $A[(i-1) k+1 . . i k]$ are sorted. Your algorithm should run in $O(n \log k)$ time.
(b) [2 pts] Given an array $A[1 . . n]$ that is already split into n / k sorted subarrays as in part (a), describe an algorithm that sorts the entire array in $O(n \log (n / k))$ time.
(c) [3 pts] Prove that your algorithm from part (a) is optimal.
(d) [4 pts] Prove that your algorithm from part (b) is optimal.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

6. SAT Reduction

Suppose you are have a black box that magically solves SAT (the formula satisfiability problem) in constant time. That is, given a boolean formula of variables and logical operators (\wedge, \vee, \neg), the black box tells you, in constant time, whether or not the formula can be satisfied. Using this black box, design and analyze a polynomial-time algorithm that computes an assignment to the variables that satisfies the formula.

7. Knapsack

You're hiking through the woods when you come upon a treasure chest filled with objects. Each object has a different size, and each object has a price tag on it, giving its value. There is no correlation between an object's size and its value. You want to take back as valuable a subset of the objects as possible (in one trip), but also making sure that you will be able to carry it in your knapsack which has a limited size.
In other words, you have an integer capacity K and a target value V, and you want to decide whether there is a subset of the objects whose total size is at most K and whose total value is at least V.
(a) [5 pts] Show that this problem is NP-hard. [Hint: Restate the problem more formally, then reduce from the NP-hard problem Partition: Given a set S of nonnegative integers, is there a partition of S into disjoint subsets A and B (where $A \cup B=S$) whose sums are equal, i.e., $\sum_{a \in A} a=\sum_{b \in B} b$.]
(b) [5 pts] Describe and analyze a dynamic programming algorithm to solve the knapsack problem in $O(n K)$ time. Prove your algorithm is correct.

