CS/ECE 374 A Lab 5 — February 14 Spring 2018

Let L be an arbitrary regular language over the alphabet X = {0, 1}. Prove that the following
languages are also regular. (You probably won't get to all of these.)

1. FLipOpDps(L) := {flipOdds(w) | w € L}, where the function flipOdds inverts every odd-
indexed bit in w. For example:

flipOdds(0000111101010101)=1010010111111111

Solution: Let M = (Q,s,A,5) be a DFA that accepts L. We construct a new DFA
M’ =(Q/,s’,A’, ") that accepts FLipODDS(L) as follows.

Intuitively, M’ receives some string flipOdds(w) as input, restores every other bit
to obtain w, and simulates M on the restored string w.

Each state (q,flip) of M’ indicates that M is in state g, and we need to flip the
next input bit if flip = TRUE

Q' = Q x {TRUE, FALSE}

s’ = (s, TRUE)

A =
&'((q.flip),a) =

2. UNFLIPODD1s(L) := {w € ¥* | flipOdd1s(w) € L}, where the function flipOdd1 inverts
every other 1 bit of its input string, starting with the first 1. For example:

flipOdd1s(0000111101010101) =0000010100010001

Solution: Let M = (Q,s,A,5) be a DFA that accepts L. We construct a new DFA
M’ =(Q,s’,A’,8") that accepts UNFLIPODD15(L) as follows.

Intuitively, M’ receives some string w as input, flips every other 1 bit, and simulates
M on the transformed string.

Each state (q,flip) of M’ indicates that M is in state g, and we need to flip the
next 1 bit of and only if flip = TRUE.

Q' = Q x {TRUE, FALSE}

s’ = (s, TRUE)

A =
5'((g.flip),a) =

CS/ECE 374 A Lab 5 — February 14 Spring 2018

3. FLIPODD1s(L) := {flipOdd1s(w) | w € L}, where the function flipOdd1 is defined as in the
previous problem.

Solution: Let M = (Q,s,A,d) be a DFA that accepts L. We construct a new NFA
M’ =(Q,s’,A’,8) that accepts FLIpOpD1s(L) as follows.

Intuitively, M’ receives some string flipOdd1s(w) as input, guesses which 0 bits to
restore to 1s, and simulates M on the restored string w. No string in FLIPOpD1s(L)
has two 1s in a row, so if M’ ever sees 11, it rejects.

Each state (q,flip) of M’ indicates that M is in state g, and we need to flip a 0 bit
before the next 1 if flip = TRUE.

Q' = Q x {TRUE, FALSE}

s’ = (s, TRUE)

A=

&'((q.flip),a) =

4. FarRo(L) := {faro(w,x) { w,x € L and |w| = |x|}, where the function faro is defined recur-
sively as follows:

x ifw=e
faro(w, x) :=]

a-faro(x,y) if w=ay for some a € ¥ and some y € ©*
For example, faro(0001101,1111001)=01010111100011. (A "faro shuffle" splits a
deck of cards into two equal piles and then perfectly interleaves them.)

Solution: Let M = (Q,s,A, &) be a DFA that accepts L. We construct a DFA M’ =
(Q,s’,A’,8") that accepts Faro(L) as follows.

Intuitively, M’ reads the string faro(w,x) as input, splits the string into the
subsequences w and x, and passes each of those strings to an independent copy of M.

Each state (g1, q,, next) indicates that the copy of M that gets w is in state q;, the
copy of M that gets x is in state g, and next indicates which copy gets the next input
bit.

Q' =QxQx{1,2}
s’ =(s,s,1)
A =

5/((q1’ q2, neXt)7 Cl) =

