Let L be an arbitrary regular language.

1. Prove that the language $\operatorname{insert1}(L):=\{x 1 y \mid x y \in L\}$ is regular.

Intuitively, insert1 (L) is the set of all strings that can be obtained from strings in L by inserting exactly one 1 . For example, if $L=\{\varepsilon, 00 \mathrm{~K}!\}$, then $\operatorname{insert1}(L)=\{1,100 \mathrm{~K}!, 010 \mathrm{~K}$!, 001K!,00K1!,00K!1\}.
2. Prove that the language delete $1(L):=\{x y \mid x 1 y \in L\}$ is regular.

Intuitively, delete $1(L)$ is the set of all strings that can be obtained from strings in L by deleting exactly one 1 . For example, if $L=\{101101,00, \varepsilon\}$, then delete $1(L)=$ \{01101, 10101, 10110\}.

Work on these later: (In fact, these might be easier than problems 1 and 2.)
3. Consider the following recursively defined function on strings:

$$
\operatorname{stutter}(w):= \begin{cases}\varepsilon & \text { if } w=\varepsilon \\ a a \cdot \operatorname{stutter}(x) & \text { if } w=a x \text { for some symbol } a \text { and some string } x\end{cases}
$$

Intuitively, $\operatorname{stutter}(w)$ doubles every symbol in w. For example:

- $\operatorname{stutter}($ PRESTO) $=$ PPRREESSTTOO
- stutter $($ HOCUS \diamond POCUS $)=$ HHOOCCUUSS $\diamond \diamond$ PPOOCCUUSS

Let L be an arbitrary regular language.
(a) Prove that the language $\operatorname{stutter}^{-1}(L):=\{w \mid \operatorname{stutter}(w) \in L\}$ is regular.
(b) Prove that the language $\operatorname{stutter}(L):=\{\operatorname{stutter}(w) \mid w \in L\}$ is regular.
4. Consider the following recursively defined function on strings:

$$
\operatorname{evens}(w):= \begin{cases}\varepsilon & \text { if } w=\varepsilon \\ \varepsilon & \text { if } w=a \text { for some symbol } a \\ b \cdot \operatorname{evens}(x) & \text { if } w=a b x \text { for some symbols } a \text { and } b \text { and some string } x\end{cases}
$$

Intuitively, evens(w) skips over every other symbol in w. For example:

- evens $($ EXPELLIARMUS $)=$ XELAMS
- evens $($ AVADA $\diamond K E D A V R A)=V D \diamond E A R$.

Once again, let L be an arbitrary regular language.
(a) Prove that the language $\operatorname{evens}^{-1}(L):=\{w \mid \operatorname{evens}(w) \in L\}$ is regular.
(b) Prove that the language $\operatorname{evens}(L):=\{\operatorname{evens}(w) \mid w \in L\}$ is regular.

