Rice's Theorem. Let \mathcal{L} be any set of languages that satisfies the following conditions:

- There is a Turing machine Y such that $\operatorname{Accept~}(Y) \in \mathcal{L}$.
- There is a Turing machine N such that $\operatorname{Accept}(N) \notin \mathcal{L}$.

The language $\operatorname{Acceptin}(\mathcal{L}):=\{\langle M\rangle \mid \operatorname{Accept}(M) \in \mathcal{L}\}$ is undecidable.
You may find the following Turing machines useful:

- $M_{\text {Accept }}$ accepts every input.
- $M_{\text {Reject }}$ rejects every input.
- $M_{\text {Hang }}$ infinite-loops on every input.

Prove that the following languages are undecidable using Rice's Theorem:

1. AcceptRegular $:=\{\langle M\rangle \mid \operatorname{Accept}(M)$ is regular $\}$
2. AcceptIllini $:=\{\langle M\rangle \mid M$ accepts the string ILLINI $\}$
3. AcceptPalindrome $:=\{\langle M\rangle \mid M$ accepts at least one palindrome $\}$
4. AcceptThree $:=\{\langle M\rangle \mid M$ accepts exactly three strings $\}$
5. AcceptUndecidable $:=\{\langle M\rangle \mid \operatorname{Accept}(M)$ is undecidable $\}$

To think about later. Which of the following languages are undecidable? How would you prove that? Remember that we know several ways to prove undecidability:

- Diagonalization: Assume the language is decidable, and derive an algorithm with selfcontradictory behavior.
- Reduction: Assume the language is decidable, and derive an algorithm for a known undecidable language, like Halt or SelfReject or NeverAccept.
- Rice's Theorem: Find an appropriate family of languages \mathcal{L}, a machine Y that accepts a language in \mathcal{L}, and a machine N that does not accept a language in \mathcal{L}.
- Closure: If two languages L and L^{\prime} are decidable, then the languages $L \cap L^{\prime}$ and $L \cup L^{\prime}$ and $L \backslash L^{\prime}$ and $L \oplus L^{\prime}$ and L^{*} are all decidable, too.

6. $\operatorname{Accept}\{\{\varepsilon\}\}:=\{\langle M\rangle \mid M$ accepts only the string ε; that is, $\operatorname{Accept}(M)=\{\varepsilon\}\}$
7. $\operatorname{Accept}\{\varnothing\}:=\{\langle M\rangle \mid M$ does not accept any strings; that is, $\operatorname{Accept}(M)=\varnothing\}$
8. Accept $\varnothing:=\{\langle M\rangle \mid \operatorname{Accept}(M)$ is not an acceptable language $\}$
9. $\operatorname{Accept}=\operatorname{Reject}:=\{\langle M\rangle \mid \operatorname{Accept}(M)=\operatorname{Reject}(M)\}$
10. $\operatorname{Accept} \neq \operatorname{Reject}:=\{\langle M\rangle \mid \operatorname{Accept}(M) \neq \operatorname{Reject}(M)\}$
11. Accept \cup Reject $:=\left\{\langle M\rangle \mid \operatorname{Accept}(M) \cup \operatorname{Reject}(M)=\Sigma^{*}\right\}$
