CS/ECE 374 A <4 Spring 2018

» Homework 1 &
Due Tuesday, January 30, 2018 at 8pm

Starting with this homework, groups of up to three people can submit joint solutions. Each
problem should be submitted by exactly one person, and the beginning of the homework should
clearly state the Gradescope names and email addresses of each group member. In addition,
whoever submits the homework must tell Gradescope who their other group members are.

1. For each of the following languages over the alphabet {0, 1}, give a regular expression that

describes that language, and briefly argue why your expression is correct.

(a) All strings except 001.

(b) All strings that end with the suffix 001001.

(c) All strings that contain the substring 001.

(d) All strings that contain the subsequence 001.

(e) All strings that do not contain the substring 001.

(f) All strings that do not contain the subsequence 001.

2. Let L denote the set of all strings in {0, 1}* that contain all four strings 00, 01, 10, and

11 as substrings. For example, the strings 110011 and 01001011101001 are in L, but
the strings 00111 and 1010101 are not.

Formally describe a DFA with input alphabet > = {0, 1} that accepts the language L,
by explicitly describing the states Q, the start state s, the accept states A, and the transition
function 6. Do not attempt to draw your DFA; the smallest DFA for this language has 20
states, which is too many for a drawing to be understandable.

Argue that your machine accepts every string in L and nothing else, by explaining
what each state in your DFA means. Formal descriptions without English explanations will
receive no credit, even if they are correct. (See the standard DFA rubric for more details.)

This is an exercise in clear communication. We are not only asking you to design a
correct DFA. We are also asking you to clearly, precisely, and convincingly explain your DFA
to another human being who understands DFAs but has not thought about this particular
problem. Excessive formality and excessive brevity will hurt you just as much as imprecision
and handwaving.

CS/ECE 374A Homework 1 (due January 30) Spring 2018

3. Let L be the set of all strings in {0, 1}* that contain exactly one occurrence of the substring
010.

(a) Give a regular expression for L, and briefly argue why your expression is correct.
[Hint: You may find the shorthand notation A* = AA* useful.]

(b) Describe a DFA over the alphabet 3 = {0, 1} that accepts the language L.

Argue that your machine accepts every string in L and nothing else, by explaining
what each state in your DFA means. You may either draw the DFA or describe it
formally, but the states Q, the start state s, the accepting states A, and the transition
function 6 must be clearly specified. Drawings or formal descriptions without English
explanations will receive no credit, even if they are correct.

CS/ECE 374A Homework 1 (due January 30) Spring 2018

Solved problem

4. C comments are the set of strings over alphabet X = {*, /,A, o, [} that form a proper
comment in the C program language and its descendants, like C++ and Java. Here
represents the newline character, ¢ represents any other whitespace character (like
the space and tab characters), and A represents any non-whitespace character other
than * or /.! There are two types of C comments:

* Line comments: Strings of the form //---J

* Block comments: Strings of the form /*---x/

Following the Cgg standard, we explicitly disallow nesting comments of the same type.
A line comment starts with // and ends at the first . after the opening //. A block
comment starts with /* and ends at the the first * / completely after the opening /*; in
particular, every block comment has at least two *s. For example, each of the following
strings is a valid C comment:

[xxx] //o/]od [%/]]oxodwx/ [x0/]odox]
On the other hand, none of the following strings is a valid C comment:

/*/ Ry [*o/*ox[ox/

(a) Describe a regular expression for the set of all C comments.

Solution:
JIU+*+A+0Yd + /x(/+A+to+d+xx*(A+o+) *x/

The first subexpression matches all line comments, and the second subexpression
matches all block comments. Within a block comment, we can freely use any
symbol other than *, but any run of *s must be followed by a character in
(A+ ¢+ J) or by the closing slash of the comment.]

1The actual C commenting syntax is considerably more complex than described here, because of character and
string literals.

e The opening /* or // of a comment must not be inside a string literal (" ---") or a (multi-)character literal

("N

* The opening double-quote of a string literal must not be inside a character literal ('" ') or a comment.

* The closing double-quote of a string literal must not be escaped (\")

* The opening single-quote of a character literal must not be inside a string literal (" ---

* The closing single-quote of a character literal must not be escaped (\ ’)

* A backslash escapes the next symbol if and only if it is not itself escaped (\\) or inside a comment.

For example, the string " /*\\\"x /" /x" /*x\" /*""x/ is a valid string literal (representing the 5-character string
/*\ "\ x/, which is itself a valid block comment!) followed immediately by a valid block comment. For this homework
question, just pretend that the characters ', "', and \ don’t exist.

Commenting in C++ is even more complicated, thanks to the addition of raw string literals. Don’t ask.

Some C and C++ compilers do support nested block comments, in violation of the language specification. A few
other languages, like OCaml, explicitly allow nesting block comments.

'...") or a comment.

CS/ECE 374A Homework 1 (due January 30) Spring 2018

Rubric: Standard regular expression rubric

(b) Describe a regular expression for the set of all strings composed entirely of blanks (),
newlines (J), and C comments.

Solution:
(o4 d + //(/+x+A+0)d+/x(/+A+o+J+xx*(A+ o+) xx*/)

This regular expression has the form ((whitespace) + (comment))*, where
(whitespace) is the regular expression ¢ + J and {(comment) is the regular
expression from part (a). []

Rubric: Standard regular expression rubric

(c) Describe a DFA that accepts the set of all C comments.

Solution: The following eight-state DFA recognizes the language of C comments.
All missing transitions lead to a hidden reject state.

/*Ao

/Aod

&ASL.

The states are labeled mnemonically as follows:

* s — We have not read anything.

* / — We just read the initial /.

e // — We are reading a line comment.

e [— We have just read a complete line comment.

* /* — We are reading a block comment, and we did not just read a * after
the opening / *.

e /** — We are reading a block comment, and we just read a * after the
opening / *.

* B — We have just read a complete block comment.

Rubric: Standard DFA design rubric

CS/ECE 374A Homework 1 (due January 30) Spring 2018

(d) Describe a DFA that accepts the set of all strings composed entirely of blanks (¢),
newlines (), and C comments.

Solution: By merging the accepting states of the previous DFA with the start
state and adding white-space transitions at the start state, we obtain the following
six-state DFA. Again, all missing transitions lead to a hidden reject state.

/*Ao
od
.
—Q
/ >k
*
* /AO(J
Acd

The states are labeled mnemonically as follows:

e s — We are between comments.

* / — We just read the initial / of a comment.

* // — We are reading a line comment.

* /* — We are reading a block comment, and we did not just read a * after
the opening /*.

e /** — We are reading a block comment, and we just read a * after the
opening / *.

|

Rubric: Standard DFA design rubric

CS/ECE 374A Homework 1 (due January 30) Spring 2018

Standard regular expression rubric. For problems worth 10 points:

¢ 2 points for a syntactically correct regular expression.

* Homework only: 4 points for a brief English explanation of your regular expression.
This is how you argue that your regular expression is correct.

— Deadly Sin (“Declare your variables.”): No credit for the problem if the
English explanation is missing, even if the regular expression is correct.

— For longer expressions, you should explain each of the major components of your
expression, and separately explain how those components fit together.

— We do not want a transciption; don’t just translate the regular-expression notation
into English.

* 4 points for correctness. (8 points on exams, with all penalties doubled)

— —1 for a single mistake: one typo, excluding exactly one string in the target language,
or including exactly one string not in the target language.

— —2 for incorrectly including/excluding more than one but a finite number of strings.

— —4 for incorrectly including/excluding an infinite number of strings.

* Regular expressions that are longer than necessary may be penalized. Regular expres-
sions that are significantly longer than necessary may get no credit at all.

Standard DFA design rubric. For problems worth 10 points:

¢ 2 points for an unambiguous description of a DFA, including the states set Q, the start
state s, the accepting states A, and the transition function 6.

— For drawings: Use an arrow from nowhere to indicate s, and doubled circles to
indicate accepting states A. If A= @&, say so explicitly. If your drawing omits a reject
state, say so explicitly. Draw neatly! If we can’t read your solution, we can’t give
you credit for it,.

— For text descriptions: You can describe the transition function either using a 2d
array, using mathematical notation, or using an algorithm.

— For product constructions: You must give a complete description of the states
and transition functions of the DFAs you are combining (as either drawings or text),
together with the accepting states of the product DFA.

* Homework only: 4 points for briefly and correctly explaining the purpose of each state
in English. This is how you justify that your DFA is correct.
— Deadly Sin (“Declare your variables.”): No credit for the problem if the
English description is missing, even if the DFA is correct.
— For product constructions, explaining the states in the factor DFAs is sufficient.

* 4 points for correctness. (8 points on exams, with all penalties doubled)

— —1 for a single mistake: a single misdirected transition, a single missing or extra
accept state, rejecting exactly one string that should be accepted, or accepting
exactly one string that should be accepted.

— —2 for incorrectly accepting/rejecting more than one but a finite number of strings.

— —4 for incorrectly accepting/rejecting an infinite number of strings.

* DFA drawings with too many states may be penalized. DFA drawings with significantly
too many states may get no credit at all.

¢ Half credit for describing an NFA when the problem asks for a DFA.

