CS 473 \& Spring 2017
 ค Homework 5 ~

Due Wednesday, March 8, 2017 at 8pm

1. Reservoir sampling is a method for choosing an item uniformly at random from an arbitrarily long stream of data.
```
GetOneSAMPLE(stream \(S\) ):
    \(\ell \leftarrow 0\)
    while \(S\) is not done
        \(x \leftarrow\) next item in \(S\)
        \(\ell \leftarrow \ell+1\)
        if \(\operatorname{RANDOM}(\ell)=1\)
            sample \(\leftarrow x\)
        (*)
    return sample
```

At the end of the algorithm, the variable ℓ stores the length of the input stream S; this number is not known to the algorithm in advance. If S is empty, the output of the algorithm is (correctly!) undefined.

In the following, consider an arbitrary non-empty input stream S, and let n denote the (unknown) length of S.
(a) Prove that the item returned by $\operatorname{GetOneSample}(S)$ is chosen uniformly at random from S.
(b) What is the exact expected number of times that GetOneSample(S) executes line (\star)?
(c) What is the exact expected value of ℓ when $\operatorname{GetOneSample}(S)$ executes line (\star) for the last time?
(d) What is the exact expected value of ℓ when either GetOneSample(S) executes line (\star) for the second time (or the algorithm ends, whichever happens first)?
(e) Describe and analyze an algorithm that returns a subset of k distinct items chosen uniformly at random from a data stream of length at least k. The integer k is given as part of the input to your algorithm. Prove that your algorithm is correct.

For example, if $k=2$ and the stream contains the sequence $\langle\uparrow, \downarrow, \downarrow\rangle$, the algorithm should return the subset $\{\downarrow, \leqslant$ with probability $1 / 6$.
2. Tabulated hashing uses tables of random numbers to compute hash values. Suppose $|\mathscr{U}|=2^{w} \times 2^{w}$ and $m=2^{\ell}$, so the items being hashed are pairs of w-bit strings (or $2 w$-bit strings broken in half) and hash values are ℓ-bit strings.

Let $A\left[0 . .2^{w}-1\right]$ and $B\left[0 . .2^{w}-1\right]$ be arrays of independent random ℓ-bit strings, and define the hash function $h_{A, B}: \mathscr{U} \rightarrow[m]$ by setting

$$
h_{A, B}(x, y):=A[x] \oplus B[y]
$$

where \oplus denotes bit-wise exclusive-or. Let \mathscr{H} denote the set of all possible functions $h_{A, B}$. Filling the arrays A and B with independent random bits is equivalent to choosing a hash function $h_{A, B} \in \mathscr{H}$ uniformly at random.
(a) Prove that \mathscr{H} is 2-uniform.
(b) Prove that \mathscr{H} is 3-uniform. [Hint: Solve part (a) first.]
(c) Prove that \mathscr{H} is not 4-uniform.

Yes, "see part (b)" is worth full credit for part (a), but only if your solution to part (b) is correct.

