
CS 473 ] Spring 2017

Y Homework 5 Z
Due Wednesday, February 15, 2017 at 8pm

0. [Warmup only; do not submit solutions]

After sending his loyal friends Rosencrantz and Guildenstern off to Norway, Hamlet
decides to amuse himself by repeatedly flipping a fair coin until the sequence of flips
satisfies some condition. For each of the following conditions, compute the exact expected
number of flips until that condition is met.

(a) Hamlet flips heads.

(b) Hamlet flips both heads and tails (in different flips, of course).

(c) Hamlet flips heads twice.

(d) Hamlet flips heads twice in a row.

(e) Hamlet flips heads followed immediately by tails.

(f) Hamlet flips more heads than tails.

(g) Hamlet flips the same positive number of heads and tails.

[Hint: Be careful! If you’re relying on intuition instead of a proof, you’re probably wrong.]

1. Consider the following non-standard algorithm for shuffling a deck of n cards, initially
numbered in order from 1 on the top to n on the bottom. At each step, we remove the top
card from the deck and insert it randomly back into in the deck, choosing one of the n
possible positions uniformly at random. The algorithm ends immediately after we pick up
card n− 1 and insert it randomly into the deck.

(a) Prove that this algorithm uniformly shuffles the deck, meaning each permutation
of the deck has equal probability. [Hint: Prove that at all times, the cards below card
n− 1 are uniformly shuffled.]

(b) What is the exact expected number of steps executed by the algorithm? [Hint: Split
the algorithm into phases that end when card n− 1 changes position.]



CS 473 Homework 3 (due February 15) Spring 2017

2. Death knocks on your door one cold blustery morning and challenges you to a game. Death
knows that you are an algorithms student, so instead of the traditional game of chess,
Death presents you with a complete binary tree with 4n leaves, each colored either black
or white. There is a token at the root of the tree. To play the game, you and Death will
take turns moving the token from its current node to one of its children. The game will
end after 2n moves, when the token lands on a leaf. If the final leaf is black, you die; if it’s
white, you will live forever. You move first, so Death gets the last turn.

∨

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ ∧

∨ ∨ ∨

∨

You can decide whether it’s worth playing or not as follows. Imagine that the nodes at
even levels (where it’s your turn) are Or gates, the nodes at odd levels (where it’s Death’s
turn) are And gates. Each gate gets its input from its children and passes its output to its
parent. White and black stand for True and False. If the output at the top of the tree is
True, then you can win and live forever! If the output at the top of the tree is False, you
should challenge Death to a game of Twister instead.

(a) Describe and analyze a deterministic algorithm to determine whether or not you can
win. [Hint: This is easy!]

(b) Unfortunately, Death won’t give you enough time to look at every node in the tree.
Describe a randomized algorithm that determines whether you can win in O(3n)
expected time. [Hint: Consider the case n= 1.]

?(c) [Extra credit] Describe and analyze a randomized algorithm that determines whether
you can win in O(cn) expected time, for some constant c < 3. [Hint: You may not
need to change your algorithm from part (b) at all!]

2



CS 473 Homework 3 (due February 15) Spring 2017

3. The following randomized variant of “one-armed quicksort” selects the kth smallest element
in an unsorted array A[1 .. n]. As usual, Partition(A[1 .. n], p) partitions the array A into
three parts by comparing the pivot element A[p] to every other element, using n − 1
comparisons, and returns the new index of the pivot element.

QuickSelect(A[1 .. n], k) :
r ← Partition(A[1 .. n],Random(n))

if k < r
return QuickSelect(A[1 .. r − 1], k)

else if k > r
return QuickSelect(A[r + 1 .. n], k− r)

else
return A[k]

(a) State a recurrence for the expected running time of QuickSelect, as a function of n
and k.

(b) What is the exact probability that QuickSelect compares the ith smallest and jth
smallest elements in the input array? The correct answer is a simple function of i, j,
and k. [Hint: Check your answer by trying a few small examples.]

(c) What is the exact probability that in one of the recursive calls to QuickSelect, the
first argument is the subarray A[i .. j]? The correct answer is a simple function of i, j,
and k. [Hint: Check your answer by trying a few small examples.]

(d) Show that for any n and k, the expected running time of QuickSelect is Θ(n). You
can use either the recurrence from part (a) or the probabilities from part (b) or (c).

3


