CS $473 \&$ Spring 2017
 ค Homework 10 ~

Due Wednesday, April 26, 2017 at 8pm

1. An integer linear program is a linear program with the additional explicit constraint that the variables must take only integer values. The ILP-FEAsibility problem asks whether there is an integer vector that satisfies a given system of linear inequalities-or more concisely, whether a given integer linear program is feasible.

Describe a polynomial-time reduction from 3Sat to ILP-Feasibility. Your reduction implies that ILP-Feasibility is NP-hard.
2. There are two different versions of the Hamiltonian cycle problem, one for directed graphs and one for undirected graphs. We saw a proof in class (and there are two proofs in the notes) that the directed Hamiltonian cycle problem is NP-hard.
(a) Describe a polynomial-time reduction from the undirected Hamiltonian cycle problem to the directed Hamiltonian cycle problem. Prove your reduction is correct.
(b) Describe a polynomial-time reduction from the directed Hamiltonian cycle problem to the undirected Hamiltonian cycle problem. Prove your reduction is correct.
(c) Which of these two reductions implies that the undirected Hamiltonian cycle problem is NP-hard?
3. Recall that a ${ }_{3} \mathrm{CNF}$ formula is a conjunction (And) of several distinct clauses, each of which is a disjunction (Or) of exactly three distinct literals, where each literal is either a variable or its negation.

Suppose you are given a magic black box that can determine in polynomial time, whether an arbitrary given 3^{CNF} formula is satisfiable. Describe and analyze a polynomialtime algorithm that either computes a satisfying assignment for a given 3 CNF formula or correctly reports that no such assignment exists, using the magic black box as a subroutine. [Hint: Call the magic black box more than once. First imagine an even more magical black box that can decide SAT for arbitrary boolean formulas, not just 3CNF formulas.]

```
Rubric (for all polynomial-time reductions): 10 points =
    + 3 points for the reduction itself
        - For an NP-hardness proof, the reduction must be from a known NP-hard
        problem. You can use any of the NP-hard problems listed in the lecture
        notes (except the one you are trying to prove NP-hard, of course).
    + 3 points for the "if" proof of correctness
    + 3 points for the "only if" proof of correctness
    + 1 point for writing "polynomial time"
    - An incorrect polynomial-time reduction that still satisfies half of the correctness
        proof is worth at most 4/10.
    - A reduction in the wrong direction is worth 0/10.
```

