CS $473 \&$ Spring 2016 ค Homework 10 ~

Due Tuesday, April 26, 2016, at 8pm

© This is the last graded homework of the semester. ๑

1. A double-Hamiltonian circuit in an undirected graph G is a closed walk that visits every vertex in G exactly twice. Prove that determining whether whether a given undirected graph contains a double-Hamiltonian circuit is NP-hard.
2. A subset S of vertices in an undirected graph G is called triangle-free if, for every triple of vertices $u, v, w \in S$, at least one of the three edges $u v, u w, v w$ is absent from G. Prove that finding the size of the largest triangle-free subset of vertices in a given undirected graph is NP-hard.

A triangle-free subset of 7 vertices.
This is not the largest triangle-free subset in this graph.
3. Suppose you are given a magic black box that can determine in polynomial time, given an arbitrary graph G, whether G is 3 -colorable. Describe and analyze a polynomial-time algorithm that either computes a proper 3-coloring of a given graph or correctly reports that no such coloring exists, using the magic black box as a subroutine. [Hint: The input to the magic black box is a graph. Just a graph. Vertices and edges. Nothing else.]

