CS 473 < Spring 2016

+» Homework o &
Due Tuesday, January 26, 2016 at 5pm

* This homework tests your familiarity with prerequisite material: designing, describing,
and analyzing elementary algorithms (at the level of CS 225); fundamental graph problems
and algorithms (again, at the level of CS 225); and especially facility with recursion and
induction. Notes on most of this prerequisite material are available on the course web page.

* Each student must submit individual solutions for this homework. For all future
homeworks, groups of up to three students will be allowed to submit joint solutions.

* Submit your solutions electronically on the course Moodle site as PDF files.

— Submit a separate file for each numbered problem.

- You can find a BIjX solution template on the course web site; please use it if you plan
to typeset your homework.

— If you must submit scanned handwritten solutions, use a black pen (not pencil) on
blank white printer paper (not notebook or graph paper), use a high-quality scanner
(not a phone camera), and print the resulting PDF file on a black-and-white printer
to verify readability before you submit.

Some important course policies

* You may use any source at your disposal—paper, electronic, or human—but you must
cite every source that you use, and you must write everything yourself in your own words.
See the academic integrity policies on the course web site for more details.

* The answer “I don’t know” (and nothing else) is worth 25% partial credit on any problem
or subproblem, on any homework or exam, except for extra-credit problems. We will
accept synonyms like “No idea” or “WTF” or “"\ (*_*)/~”, but you must write something.

* Avoid the Three Deadly Sins! There are a few dangerous writing (and thinking) habits
that will trigger an automatic zero on any homework or exam problem, unless your
solution is nearly perfect otherwise. Yes, we are completely serious.

— Always give complete solutions, not just examples.
— Always declare all your variables, in English.
— Never use weak induction.

See the course web site for more information.

If you have any questions about these policies,
please don’t hesitate to ask in class, in office hours, or on Piazza.

CS 473 Homework o (due January 26) Spring 2016

1. A rolling die masze is a puzzle involving a standard six-sided die (a cube with numbers on
each side) and a grid of squares. You should imagine the grid lying on top of a table; the
die always rests on and exactly covers one square. In a single step, you can roll the die 9o
degrees around one of its bottom edges, moving it to an adjacent square one step north,
south, east, or west.

. oz
i B

Some squares in the grid may be blocked; the die must never be rolled onto a blocked
square. Other squares may be labeled with a number; whenever the die rests on a labeled
square, the number of pips on the top face of the die must equal the label. Squares that
are neither labeled nor marked are free. You may not roll the die off the edges of the grid.
A rolling die maze is solvable if it is possible to place a die on the lower left square and roll
it to the upper right square under these constraints.

For example, here are two rolling die mazes. Black squares are blocked; empty white
squares are free. The maze on the left can be solved by placing the die on the lower left
square with 1 pip on the top face, and then rolling it north, then north, then east, then east.
The maze on the right is not solvable.

1 - HE
1] 1|

Two rolling die mazes. Only the maze on the left is solvable.

Describe and analyze an efficient algorithm to determine whether a given rolling die
maze is solvable. Your input is a two-dimensional array Label[1..n,1..n], where each
entry Label[i, j] stores the label of the square in the ith row and jth column, where the
label 0 means the square is free, and the label —1 means the square is blocked.

[Hint: Build a graph. What are the vertices? What are the edges? Is the graph directed
or undirected? Do the vertices or edges have weights? If so, what are they? What textbook
problem do you need to solve on this graph? What textbook algorithm should you use to solve
that problem? What is the running time of that algorithm as a function of n? What does the
number 24 have to do with anything?]

CS 473 Homework o (due January 26) Spring 2016

2. Describe and analyze fast algorithms for the following problems. The input for each
problem is an unsorted array A[1..n] of n arbitrary numbers, which may be positive,
negative, or zero, and which are not necessarily distinct.

(a) Are there two distinct indices i < j such that A[i]+A[j] = 0?
(b) Are there three distinct indices i < j < k such that A[i]+A[j]+A[k] = 0?

For example, if the input array is [2,—1, 0, 4, 0,—1], both algorithms should return TRUE,
but if the input array is [4,—1, 2, 0], both algorithms should return FaLsE. You do not need
to prove that your algorithms are correct. [Hint: The devil is in the details.]

3. A binomial tree of order k is defined recursively as follows:

* A binomial tree of order O is a single node.

e For all k > 0, a binomial tree of order k consists of two binomial trees of order k — 1,
with the root of one tree connected as a new child of the root of the other. (See the
figure below.)

Prove the following claims:

(a) For all non-negative integers k, a binomial tree of order k has exactly 2F nodes.

(b) For all positive integers k, attaching a new leaf to every node in a binomial tree of
order k — 1 results in a binomial tree of order k.

(c) For all non-negative integers k and d, a binomial tree of order k has exactly (Z) nodes
with depth d. (Hence the name!)

%8 By Ty,
RRRCR N

Binomial trees of order O through 5.
Top row: The recursive definition. Bottom row: The property claimed in part (b).

CS 473 Homework o (due January 26) Spring 2016

*4. [Extra credit] An arithmetic expression tree is a binary tree where every leaf is labeled
with a variable, every internal node is labeled with an arithmetic operation, and every
internal node has exactly two children. For this problem, assume that the only allowed
operations are + and x. Different leaves may or may not represent different variables.

Every arithmetic expression tree represents a function, transforming input values for
the leaf variables into an output value for the root, by following two simple rules: (1) The
value of any +-node is the sum of the values of its children. (2) The value of any x-node is
the product of the values of its children.

Two arithmetic expression trees are equivalent if they represent the same function;
that is, the same input values for the leaf variables always leads to the same output value at
both roots. An arithmetic expression tree is in normal form if the parent of every +-node
(if any) is another +-node.

Three equivalent expression trees. Only the third expression tree is in normal form.

Prove that for any arithmetic expression tree, there is an equivalent arithmetic expression
tree in normal form. [Hint: This is harder than it looks.]

CS 473 < Spring 2016

» Homework 1 &,
Due Tuesday, February 2, 2016, at 8pm

Starting with this homework, groups of up to three students may submit joint solutions.
Group solutions must represent an honest collaborative effort by all members of the
group. Please see the academic integrity policies for more information.

You are responsible for forming your own groups. Groups can change from homework to
homework, or even from (numbered) problem to problem.

Please make sure the names and NetIDs of all group members appear prominently at the
top of the first page of each submission.

Please only upload one submission per group for each problem. In the Online Text box on
the problem submission page, you must type in the NetIDs of all group members, including
the person submitting. See the Homework Policies for examples. Failure to enter all group
NetIDs will delay (if not prevent) giving all group members the grades they deserve.

For dynamic programming problems, a full-credit solution must include the following:

— A clear English specification of the underlying recursive function. (For example:
“Let Edit(i, j) denote the edit distance between A[1..i] and B[1..].”) Omitting the
English description is a Deadly Sin, which will result in an automatic zero.

— One of the following:

* A correct recursive function or algorithm that computes the specified function,
a clear description of the memoization structure, and a clear description of the
iterative evaluation order.

* Pseudocode for the final iterative dynamic programming algorithm.

— The running time.

For problems that ask for an algorithm that computes an optimal structure—such as a
subset, subsequence, partition, coloring, tree, or path—an algorithm that computes only
the value or cost of the optimal structure is sufficient for full credit, unless the problem says
otherwise.

Official solutions will provide target time bounds for full credit. Correct algorithms that
are faster than the official solution will receive extra credit points; correct algorithms that
are slower than the official solution will get partial credit. We rarely include these target
time bounds in the actual questions, because when we do, more students submit fast but
incorrect algorithms (worth o/10 on exams) instead of correct but slow algorithms (worth
8/10 on exams).

CS 473 Homework 1 (due February 2) Spring 2016

1. Let’s define a summary of two strings A and B to be a concatenation of substrings of the
following form:
* ASNA indicates a substring SNA of only the first string A.
* @F00 indicates a common substring FO0 of both strings.
* VBAR indicates a substring BAR of only the second string B.
A summary is valid if we can recover the original strings A and B by concatenating the
appropriate substrings of the summary in order and discarding the delimiters A, ¢, and V.

Each regular character has length 1, and each delimiter A, ¢, or ¥ has some fixed
non-negative length A. The length of a summary is the sum of the lengths of its symbols.

For example, each of the following strings is a valid summary of the strings KITTEN and
KNITTING:

* OKVYNQITTAEVI@NYG has length 9+ 7A.

* KVYNQITTAENVING has length 10 +5A.

* ®KAITTENVNITTING has length 13 + 3A.

* AKITTENVKNITTING haslength 14+ 2A.

Describe and analyze an algorithm that computes the length of the shortest summary
of two given strings A[1..m] and B[1..n]. The delimiter length A is also part of the input
to your algorithm. For example:

* Given strings KITTEN and KNITTING and A = 0, your algorithm should return 9.

* Given strings KITTEN and KNITTING and A = 1, your algorithm should return 15.

* Given strings KITTEN and KNITTING and A = 2, your algorithm should return 18.

2. Suppose you are given a sequence of positive integers separated by plus (+) and minus (—)
signs; for example:
1+43—-2—-54+1—-6+7

You can change the value of this expression by adding parentheses in different places. For
example:

1+3—2—-5+1—-6+7=-1
(1+3—-(2-5)+(1—-6)+7=9
1+3B-2)—-GB+1)—(6+7)=-17
Describe and analyze an algorithm to compute the maximum possible value the expression
can take by adding parentheses.

You may only use parentheses to group additions and subtractions; in particular, you
are not allowed to create implicit multiplication as in 1 + 3(—2)(—5)+1—6+7 = 33.

CS 473 Homework 1 (due February 2) Spring 2016

3. The president of the Punxsutawney office of Giggle, Inc. has decided to give every employee
a present to celebrate Groundhog Day! Each employee must receive one of three gifts:
(1) an all-expenses-paid six-week vacation with Bill Murray,0 (2) an all-the-Punxsutawney-
pancakes-you-can-eat breakfast for two at Punxy Phil’s Family Restaurant, or (3) a burning
paper bag of groundhog poop. Corporate regulations prohibit any employee from receiving
exactly the same gift as their direct supervisor. Unfortunately, any employee who receives
a better gift than their direct supervisor will almost certainly be fired in a fit of jealousy.

As Giggle-Punxsutawney’s official gift czar, it’s your job to decide which gift each
employee receives. Describe an algorithm to distribute gifts so that the minimum number
of people are fired. Yes, you can give the president groundhog poop.

A tree labeling with cost 9. The nine bold nodes have smaller labels than their parents.
The president got a vacation with Bill Murray. This is not the optimal labeling for this tree.

More formally, you are given a rooted tree T, representing the company hierarchy, and
you want to label each node in T with an integer 1, 2, or 3, so that every node has a
different label from its parent. The cost of an labeling is the number of nodes that have
smaller labels than their parents. Describe and analyze an algorithm to compute the
minimum cost of any labeling of the given tree T.

OThe details of scheduling n distinct six-week vacations with Bill Murray, all in a single year, are left as an exercise
for the reader.

CS 473 < Spring 2016

 Homework 2 &
Due Tuesday, February 9, 2016, at 8pm

1. [Insert amusing story about distributing polling stations or cell towers or Starbucks or
something on a long straight road in rural Iowa. Ha ha ha, how droll.]

More formally, you are given a sorted array X[1..n] of distinct numbers and a positive
integer k. A set of k intervals covers X if every element of X lies inside one of the k
intervals. Your aim is to find k intervals [a,,2;],[as,25],...,[ax, 2] that cover X where

. k
the function »;,_, (z; — a;)? is as small as possible. Intuitively, you are trying to cover the
points with k intervals whose lengths are as close to equal as possible.

(a) Describe an algorithm that finds k intervals with minimum total squared length that
cover X. The running time of your algorithm should be a simple function of n and k.

(b) Consider the two-dimensional matrix M[1..n,1..n] defined as follows:

M[i,j]= X[1-X[i)?* ifi<j
117 o otherwise

Prove that M satisfies the Monge property: M[i,j]+ M[i’,j']1 < M[i,j’]+ M[i’,j]
for all indices i < i’ and j < j'.

(c) [Extra credit] Describe an algorithm that finds k intervals with minimum total
squared length that cover X in O(nk) time. [Hint: Solve part (a) first, then use

part (b).]

We strongly recommend submitting your solution to part (a) separately, and only describing
your changes to that solution for part (c).

2. The Doctor and River Song decide to play a game on a directed acyclic graph G, which has
one source s and one sink t.0

Each player has a token on one of the vertices of G. At the start of the game, The
Doctor’s token is on the source vertex s, and River’s token is on the sink vertex t. The
players alternate turns, with The Doctor moving first. On each of his turns, the Doctor
moves his token forward along a directed edge; on each of her turns, River moves her
token backward along a directed edge.

If the two tokens ever meet on the same vertex, River wins the game. (“Hello, Sweetie!”)
If the Doctor’s token reaches t or River’s token reaches s before the two tokens meet, then
the Doctor wins the game.

Describe and analyze an algorithm to determine who wins this game, assuming both
players play perfectly. That is, if the Doctor can win no matter how River moves, then your
algorithm should output “Doctor”, and if River can win no matter how the Doctor moves,
your algorithm should output “River”. (Why are these the only two possibilities?) The
input to your algorithm is the graph G.

opossibly short for the Untempered Schism and the Time Vortex, or the Shining World of the Seven Systems
(otherwise known as Gallifrey) and Trenzalore, or Skaro and Telos, or something timey-wimey.

CS 473 < Spring 2016

+ Homework 3 &u
Due Tuesday, February 9, 2016, at 8pm

Unless a problem specifically states otherwise, you may assume a function RANDoOM
that takes a positive integer k as input and returns an integer chosen uniformly and
independently at random from {1,2,...,k} in O(1) time. For example, to flip a fair
coin, you could call Ranpom(2).

1. Suppose we want to write an efficient function RANDOMPERMUTATION(n) that returns a
permutation of the set {1,2,...,n} chosen uniformly at random.

(a) Prove that the following algorithm is not correct. [Hint: There is a one-line proof!]

RANDOMPERMUTATION(N):
fori<—1ton
n[i] i
forie—1ton
swap 7t[i] «— n[Ranpom(n)]

(b) Consider the following implementation of RANDOMPERMUTATION.

RANDOMPERMUTATION(N):
fori«<—1ton
n[i] « NULL
fori—1ton
j < Ranpowm(n)
while (n[j] != NULL)
j < Ranpom(n)
n[jlei
return 1

Prove that this algorithm is correct and analyze its expected running time.

(c) Describe and analyze an implementation of RANDOMPERMUTATION that runs in
expected worst-case time O(n).

2. A majority tree is a complete ternary tree in which every leaf is labeled either O or 1.
The value of a leaf is its label; the value of any internal node is the majority of the values
of its three children. For example, if the tree has depth 2 and its leaves are labeled
1,0,0,0,1,0,1,1, 1, the root has value 0.

A majority tree with depth 2.

CS 473 Homework 3 (due February 16) Spring 2016

It is easy to compute value of the root of a majority tree of depth n in O(3") time, given
the sequence of 3" leaf labels as input, using a simple post-order traversal of the tree. Prove
that this simple algorithm is optimal, and then describe a better algorithm. More formally:

(a) Prove that any deterministic algorithm that computes the value of the root of a
majority tree must examine every leaf. [Hint: Consider the special case n = 1. Recurse.]

(b) Describe and analyze a randomized algorithm that computes the value of the root in
worst-case expected time O(c™) for some explicit constant ¢ < 3. [Hint: Consider the
special case n = 1. Recurse.]

3. A meldable priority queue stores a set of keys from some totally-ordered universe (such
as the integers) and supports the following operations:

* MAKEQUEUE: Return a new priority queue containing the empty set.

* FINDMIN(Q): Return the smallest element of Q (if any).

* DELETEMIN(Q): Remove the smallest element in Q (if any).

* INSERT(Q, x): Insert element x into Q, if it is not already there.

* DECREASEKEY(Q, x, y): Replace an element x € Q with a smaller key y. (If y > x,
the operation fails.) The input is a pointer directly to the node in Q containing x.

* DELETE(Q, x): Delete the element x € Q. The input is a pointer directly to the node
in Q containing x.

* MELD(Q,Q,): Return a new priority queue containing all the elements of Q; and Q5;
this operation destroys Q; and Q5.

A simple way to implement such a data structure is to use a heap-ordered binary tree,
where each node stores a key, along with pointers to its parent and two children. MELD
can be implemented using the following randomized algorithm:

MELD(Q;,Q5):
if Q, is empty return Q,
if Q, is empty return Q,
if key(Q;) > key(Q,)
swap Q; <= Q,
with probability 1/2
left(Q1) < MELD(left(Q,), Q2)

else
right(Q,) « MELD(right(Q;),Q,)

return Q;

(a) Prove that for any heap-ordered binary trees Q; and Q5 (not just those constructed by
the operations listed above), the expected running time of MELD(Q{, Q,) is O(logn),
where n = |Q;|+|Q,|. [Hint: What is the expected length of a random root-to-leaf path
in an n-node binary tree, where each left/right choice is made with equal probability?]

(b) Prove that MELD(Q1,Q,) runs in O(logn) time with high probability.

(c) Show that each of the other meldable priority queue operations can be implemented
with at most one call to MELD and O(1) additional time. (It follows that each operation
takes only O(logn) time with high probability.)

CS 473 < Spring 2016

+ Homework 4 eu
Due Tuesday, March 1, 2016, at 8pm

Unless a problem specifically states otherwise, you may assume a function RANDoOM
that takes a positive integer k as input and returns an integer chosen uniformly and
independently at random from {1,2,...,k} in O(1) time. For example, to flip a fair
coin, you could call Ranpom(2).

. Suppose we are given a two-dimensional array M[1..n,1..n] in which every row and
every column is sorted in increasing order and no two elements are equal.

(a) Describe and analyze an algorithm to solve the following problem in O(n) time: Given
indices i, j,i’,j’ as input, compute the number of elements of M larger than M[i, j]
and smaller than M[i’, j’].

(b) Describe and analyze an algorithm to solve the following problem in O(n) time: Given
indices i, j,i’,j’ as input, return an element of M chosen uniformly at random from
the elements larger than M[i, j] and smaller than M[i’,j’]. Assume the requested
range is always non-empty.

(c) Describe and analyze a randomized algorithm to compute the median element of M
in O(nlogn) expected time.

. Tabulated hashing uses tables of random numbers to compute hash values. Suppose
|U| = 2% x 2" and m = 2¢, so the items being hashed are pairs of w-bit strings (or 2w-bit
strings broken in half) and hash values are £-bit strings.

Let A[0..2" —1] and B[0..2" — 1] be arrays of independent random £-bit strings, and
define the hash function h, 5 : U — [m] by setting

hyp(x,y) :=Alx]®B[y]

where & denotes bit-wise exclusive-or. Let H denote the set of all possible functions hy p.
Filling the arrays A and B with independent random bits is equivalent to choosing a hash
function hy g € H uniformly at random.

(a) Prove that K is 2-uniform.
(b) Prove that K is 3-uniform. [Hint: Solve part (a) first.]

(c¢) Prove that H is not 4-uniform.

Yes, “see part (b)” is worth full credit for part (a), but only if your solution to part (b) is
correct.

CS 473 < Spring 2016

+» Homework 5 eu
Due Tuesday, March 1, 2016, at 8pm

Unless a problem specifically states otherwise, you may assume a function RANDoOM
that takes a positive integer k as input and returns an integer chosen uniformly and
independently at random from {1,2,...,k} in O(1) time. For example, to flip a fair
coin, you could call Ranpom(2).

. Reservoir sampling is a method for choosing an item uniformly at random from an
arbitrarily long stream of data.

GETONESAMPLE(stream S):
{0
while S is not done
X < next item in S
L—L+1
if Ranpom({) =1
sample — x (%)

return sample

At the end of the algorithm, the variable ¢ stores the length of the input stream S; this
number is not known to the algorithm in advance. If S is empty, the output of the algorithm
is (correctly!) undefined. In the following, consider an arbitrary non-empty input stream S,
and let n denote the (unknown) length of S.

(a) Prove that the item returned by GETONESAMPLE(S) is chosen uniformly at random
from S.

(b) Describe and analyze an algorithm that returns a subset of k distinct items chosen
uniformly at random from a data stream of length at least k. The integer k is given as
part of the input to your algorithm. Prove that your algorithm is correct.

For example, if k = 2 and the stream contains the sequence (#,¥, ¢,) the
algorithm should return the subset {#, #} with probability 1/6.

CS 473 Homework 5 (due March 8) Spring 2016

2. In this problem, we will derive a streaming algorithm that computes an accurate estimate n
of the number of distinct items in a data stream S. Suppose S contains n unique items (but
possible several copies of each item); the algorithm does not know n in advance. Given an
accuracy parameter 0 < ¢ < 1 and a confidence parameter 0 < 6 < 1 as part of the input,
our final algorithm will guarantee that Pr[|n —n| > en] < 6.

As a first step, fix a positive integer m that is large enough that we don’t have to
worry about round-off errors in the analysis. Our first algorithm chooses a hash function
h: U — [m] at random from a 2-uniform family, computes the minimum hash value
i =min{h(x) | x € S}, and finally returns the estimate 7 = m/H.

(a) Prove thatPr[n> (1+¢&)n]<1/(1+¢). [Hint: Markov’s inequality]
(b) Prove thatPr[n<(l1—¢)n]<1—e. [Hint: Chebyshev’s inequality]

(c) We can improve this estimator by maintaining the k smallest hash values, for some
integer k > 1. Let n; = k-m/hy, where fi. is the kth smallest element of {h(x) | x € S}.
Estimate the smallest value of k (as a function of the accuracy parameter) such

that Pr[|n, —n| > en] < 1/4.

(d) Now suppose we run d copies of the previous estimator in parallel to generate d
independent estimates 1y 1, 5, ...,k 4, for some integer d > 1. Each copy uses its
own independently chosen hash function, but they all use the same value of k that
you derived in part (c). Let N be the median of these d estimates.

Estimate the smallest value of d (as a function of the confidence parameter 6)
such that Pr[|[N —n| > en] < 6.

CS 473 < Spring 2016

» Homework 6 &
Due Tuesday, March 15, 2016, at 8pm

For problems that use maximum flows as a black box, a full-credit solution requires the following.

A complete description of the relevant flow network, specifying the set of vertices, the set
of edges (being careful about direction), the source and target vertices s and t, and the
capacity of every edge. (If the flow network is part of the original input, just say that.)

A description of the algorithm to construct this flow network from the stated input. This
could be as simple as “We can construct the flow network in O(n®) time by brute force.”

A description of the algorithm to extract the answer to the stated problem from the
maximum flow. This could be as simple as “Return TRUE if the maximum flow value is at
least 42 and False otherwise.”

A proof that your reduction is correct. This proof will almost always have two components.
For example, if your algorithm returns a boolean, you should prove that its TRUE answers
are correct and that its FALSE answers are correct. If your algorithm returns a number, you
should prove that number is neither too large nor too small.

The running time of the overall algorithm, expressed as a function of the original input
parameters, not just the number of vertices and edges in your flow network.

You may assume that maximum flows can be computed in O(VE) time. Do not regurgitate
the maximum flow algorithm itself.

Reductions to other flow-based algorithms described in class or in the notes (for example: edge-
disjoint paths, maximum bipartite matching, minimum-cost circulation) or to other standard
graph problems (for example: reachability, minimum spanning tree, shortest paths) have similar
requirements.

1.

Suppose you are given a directed graph G = (V, E), two vertices s and t in V, a capacity
function c: E — R*, and a second function f : E — R. Describe an algorithm to determine
whether f is a maximum (s, t)-flow in G. Do not assume anything about the function f.

. Suppose you have already computed a maximum flow f* in a flow network G with integer

edge capacities.
(a) Describe and analyze an algorithm to update the maximum flow after the capacity of
a single edge is increased by 1.
(b) Describe and analyze an algorithm to update the maximum flow after the capacity of

a single edge is decreased by 1.

Both algorithms should be significantly faster than recomputing the maximum flow from
scratch.

CS 473 Homework 6 (due March 15) Spring 2016

3. Suppose you are given an n x n checkerboard with some of the squares deleted. You
have a large set of dominos, just the right size to cover two squares of the checkerboard.
Describe and analyze an algorithm to determine whether it is possible to tile the board with
dominos—each domino must cover exactly two undeleted squares, and each undeleted
square must be covered by exactly one domino.

)
T L
- b - =0
C) D[——u—ﬁ
CDCJEH]Cj
Ueaies

Your input is a two-dimensional array Deleted[1..n, 1.. n] of bits, where Deleted[i, j] = TRUE
if and only if the square in row i and column j has been deleted. Your output is a single
bit; you do not have to compute the actual placement of dominos. For example, for the
board shown above, your algorithm should return TRUE.

CS 473 < Spring 2016

+ Homework 7 &
Due Tuesday, March 29, 2016, at 8pm

This is the last homework before Midterm 2.

1. Suppose we are given a two-dimensional array A[1..m, 1..n] of non-negative real numbers.
We would like to round A to an integer matrix, by replacing each entry x in A with either
Lx] or [x], without changing the sum of entries in any row or column of A. For example:

1.2 34 24 1 4 2
39 40 21|+~— (4 4 2
79 1.6 0.5 8§ 1 1

Describe and analyze an efficient algorithm that either rounds A in this fashion, or reports
correctly that no such rounding exists.

2. You're organizing the Third Annual UIUC Computer Science 72-Hour Dance Exchange, to
be held all day Friday, Saturday, and Sunday in Siebel Center.00 Several 30-minute sets of
music will be played during the event, and a large number of DJs have applied to perform.
You need to hire DJs according to the following constraints.

* Exactly k sets of music must be played each day, and thus 3k sets altogether.

* Each set must be played by a single DJ in a consistent musical genre (ambient,
bubblegum, dancehall, horrorcore, trip-hop, Nashville country, Chicago blues, axé,
laiké, skiffle, shape note, Nitzhonot, J-pop, K-pop, C-pop, T-pop, 8-bit, Tesla coil, ...).

* Each genre must be played at most once per day.
* Each DJ has given you a list of genres they are willing to play.
* No DJ can play more than five sets during the entire event.
Suppose there are n candidate DJs and g different musical genres available. Describe and

analyze an efficient algorithm that either assigns a DJ and a genre to each of the 3k sets,
or correctly reports that no such assignment is possible.

3. Describe and analyze an algorithm to determine, given an undirectedo graph G = (V, E)
and three vertices u, v,w € V as input, whether G contains a simple path from u to w that
passes through v.

OEfforts to secure overflow space in ECEB were sadly unsuccessful.
OThis adjective is important; if the input graph were directed, this problem would be NP-hard.

CS 473 < Spring 2016
» Homework 8 &
Due Tuesday, April 12, 2016, at 8pm

You may assume the following results in your solutions:
¢ Maximum flows and minimum cuts can be computed in O(VE) time.
» Minimum-cost flows can be computed in O(E? log2 V) time.
* Linear programming problems with integer coefficients can be solved in polynomial time.

For problems that ask for a linear-programming formulation of some problem, a full credit
solution requires the following components:

* A list of variables, along with a brief English description of each variable. (Omitting these
English descriptions is a Deadly Sin.)

* A linear objective function (expressed either as minimization or maximization, whichever
is more convenient), along with a brief English description of its meaning.

* Asequence of linear inequalities (expressed using <, =, or >, whichever is more appropriate
or convenient), along with a brief English description of each constraint.

* A proof that your linear programming formulation is correct, meaning that the optimal
solution to the original problem can always be obtained from the optimal solution to the
linear program. This may be very short.

It is not necessary to express the linear program in canonical form, or even in matrix form.
Clarity is much more important than formality.

1. Suppose your are given a rooted tree T, where every edge e has two associated values: a
non-negative length £(e), and a cost $(e) (which could be positive, negative, or zero). Your
goal is to add a non-negative stretch s(e) = 0 to the length of every edge e in T, subject to
the following conditions:

* Every root-to-leaf path 7 in T has the same total stretched length >’ cer(l(e) +s(e))
* The total weighted stretch >, s(e) - $(e) is as small as possible.

(a) Describe an instance of this problem with no optimal solution.

(b) Give a concise linear programming formulation of this problem. (For the instance
described in part (a), your linear program will be unbounded.)

(c) Suppose that for the given tree T and the given lengths and costs, the optimal solution
to this problem is unique. Prove that in this optimal solution, we have s(e) = 0 for
every edge on some longest root-to-leaf path in T. In other words, prove that the
optimally stretched tree with the same depth as the input tree. [Hint: What is a basis
in your linear program? What is a feasible basis?]

CS 473 Homework 8 (due April 12) Spring 2016

Problem 1(c) originally omitted the uniqueness assumption and asked for a proof that every
optimal solution has an unstretched root-to-leaf path, but that more general claim is false.
For example, if every edge has cost zero, there are optimal solutions in which every edge
has positive stretch.

2. Describe and analyze an efficient algorithm for the following problem, first posed and
solved by the German mathematician Carl Jacobi in the early 1800s.0

Disponantur nn quantitates hg) quaecunque in schema Quadrati, ita ut k habeantur n series
horizontales et n series verticales, quarum quaeque est n terminorum. Ex illis quantitatibus
eligantur n transversales, i.e. in seriebus horizontalibus simul atque verticalibus diversis
positae, quod fieri potest 1.2...n modis; ex omnibus illis modis quaerendum est is, qui
summam n numerorum electorum suppeditet maximam.

For those few students who are not fluent in mid-19th century academic Latin, here is a
modern English translation of Jacobi’s problem. Suppose we are given an n x n matrix M.
Describe and analyze an algorithm that computes a permutation o that maximizes the sum
Z:.l:l M,; oiy, or equivalently, permutes the columns of M so that the sum of the elements
along the diagonal is as large as possible.

Please do not submit your solution in mid-19th century academic Latin.

3. Suppose we are given a sequence of n linear inequalities of the form a;x + b;y < ;.
Collectively, these n inequalities describe a convex polygon P in the plane.

(a) Describe a linear program whose solution describes the largest square with horizontal
and vertical sides that lies entirely inside P.

(b) Describe a linear program whose solution describes the largest circle that lies entirely
inside P.

0Carl Gustav Jacob Jacobi. De investigando ordine systematis aequationum differentialum vulgarium cujuscunque.
J. Reine Angew. Math. 64(4):297-320, 1865. Posthumously published by Carl Borchardt.

CS 473 < Spring 2016

» Homework 9 &
Due Tuesday, April 19, 2016, at 8pm

For problems that ask to prove that a given problem X is NP-hard, a full-credit solution requires
the following components:

* Specify a known NP-hard problem Y, taken from the problems listed in the notes.

* Describe a polynomial-time algorithm for Y, using a black-box polynomial-time algorithm
for X as a subroutine. Most NP-hardness reductions have the following form: Given an
arbitrary instance of Y, describe how to transform it into an instance of X, pass this instance
to a black-box algorithm for X, and finally, describe how to transform the output of the
black-box subroutine to the final output. A cartoon with boxes may be helpful.

* Prove that your reduction is correct. As usual, correctness proofs for NP-hardness reductions
usually have two components (“one for each 7).

1. Consider the following solitaire game. The puzzle consists of an n x m grid of squares,
where each square may be empty, occupied by a red stone, or occupied by a blue stone.
The goal of the puzzle is to remove some of the given stones so that the remaining stones
satisfy two conditions: (1) every row contains at least one stone, and (2) no column
contains stones of both colors. For some initial configurations of stones, reaching this goal
is impossible.

080 Qo |©
RB|W 8
8 O©:> @)
O |8 O/ |

A solvable puzzle and one of its many solutions. An unsolvable puzzle.

OO
RIOB|O

Prove that it is NP-hard to determine, given an initial configuration of red and blue
stones, whether the puzzle can be solved.

2. Everyone’s having a wonderful time at the party you're throwing, but now it’s time to
line up for The Algorithm March (7L ') X .. Z 9 L A)! This dance was originally
developed by the Japanese comedy duo Itsumo Kokokara (\x D3 Z Zh*) for the
children’s television show PythagoraSwitch (& ¥ T5 A A v F). The Algorithm March is
performed by a line of people; each person in line starts a specific sequence of movements
one measure later than the person directly in front of them. Thus, the march is the dance
equivalent of a musical round or canon, like “Row Row Row Your Boat”.0 Proper etiquette
dictates that each marcher must know the person directly in front of them in line, lest a
minor mistake during lead to horrible embarrassment between strangers.

Suppose you are given a complete list of which people at your party know each other.
Prove that it is NP-hard to determine the largest number of party-goers that can participate
in the Algorithm March. You may assume without loss of generality that there are no ninjas
at your party.

DTALA5BbI %, £5THAELYMNE. TA5X5Eb) %

CS 473 < Spring 2016

«» Homework 10 &
Due Tuesday, April 26, 2016, at 8pm

e» This is the last graded homework of the semester. o

1. A double-Hamiltonian circuit in an undirected graph G is a closed walk that visits every
vertex in G exactly twice. Prove that determining whether whether a given undirected
graph contains a double-Hamiltonian circuit is NP-hard.

2. A subset S of vertices in an undirected graph G is called triangle-free if, for every triple of
vertices u, v,w € S, at least one of the three edges uv,uw, vw is absent from G. Prove that
finding the size of the largest triangle-free subset of vertices in a given undirected graph is
NP-hard.

A triangle-free subset of 7 vertices.
This is not the largest triangle-free subset in this graph.

3. Suppose you are given a magic black box that can determine in polynomial time, given
an arbitrary graph G, whether G is 3-colorable. Describe and analyze a polynomial-time
algorithm that either computes a proper 3-coloring of a given graph or correctly reports
that no such coloring exists, using the magic black box as a subroutine. [Hint: The input to
the magic black box is a graph. Just a graph. Vertices and edges. Nothing else.]

CS 473 < Spring 2016
s Homework 11 &

Solutions will be released on Tuesday, May 3, 2016.

This homework will not be graded.
However, material covered by this homework may appear on the final exam.

1. The linear arrangement problem asks, given an n-vertex directed graph as input, for an
ordering vy, Vs, ..., v, of the vertices that maximizes the number of forward edges: directed
edges v;—v; such that i < j. Describe and analyze an efficient 2-approximation algorithm
for this problem. (Solving this problem exactly is NP-hard.)

2. Let G = (V, E) be an undirected graph, each of whose vertices is colored either red, green,
or blue. An edge in G is boring if its endpoints have the same color, and interesting if
its endpoints have different colors. The most interesting 3-coloring is the 3-coloring with
the maximum number of interesting edges, or equivalently, with the fewest boring edges.
Computing the most interesting 3-coloring is NP-hard, because the standard 3-coloring
problem is a special case.

(a) Let wow(G) denote the number of interesting edges in the most interesting 3-coloring
of G. Suppose we independently assign each vertex in G a random color from the
set {red, green, blue}. Prove that the expected number of interesting edges is at least
%wow(G).

(b) Prove that with high probability, the expected number of interesting edges is at least
%WOW(G). [Hint: Use Chebyshev’s inequality. But wait. .. How do we know that we
can use Chebyshev’s inequality?]

(c) Let z22(G) denote the number of boring edges in the most interesting 3-(:oloringl 0(())f a
graph G. Prove that it is NP-hard to approximate zzz(G) within a factor of 101 .

3. Suppose we want to schedule a give set of n jobs on on a machine containing a row of p
identical processors. Our input consists of two arrays duration[1..n] and width[1..n]. A
valid schedule consists of two arrays start[1..n] and first[1..n] that satisfy the following
constraints:

* start[j] >0 for all j.

* The jth job runs on processors first[j] through first[j] +width[j]—1, starting at time
start[j] and ending at time start[j] + duration[j].

* No processor can run more than one job simultaneously.

The makespan of a schedule is the largest finishing time: max;(start[j]+ duration[j]). Our
goal is to compute a valid schedule with the smallest possible makespan.

(a) Prove that this scheduling problem is NP-hard.

CS 473

Homework 11 (“due” May 3) Spring 2016

(b)

(©

Describe a polynomial-time algorithm that computes a 3-approximation of the mini-
mum makespan of the given set of jobs. That is, if the minimum makespan is M, your
algorithm should compute a schedule with makespan at most 3M. You may assume
that p is a power of 2. [Hint: Assume that p is a power of 2.]

Describe an algorithm that computes a 3-approximation of the minimum makespan
of the given set of jobs in O(nlogn) time. Again, you may assume that p is a power
of 2.

CS 473 Standard exam rubrics Spring 2016

These are the standard 10-point rubrics that we will use for certain types of exam questions.
When these problems appear in the homework, a score of x on this 10-point scale corresponds to
a score of [x/3] on the 4-point homework scale.

Proof by Induction
* 2 points for stating a valid strong induction hypothesis.

— The inductive hypothesis need not be stated explicitly if it is a mechanical translation
of the theorem (that is, “Assume P(k) for all k < n” when the theorem is “P(n) for
all n”) and it is applied correctly. However, if the proof requires a stronger induction
hypothesis (“Assume P(k) and Q(k) for all k < n”) then it must be stated explicitly.

— By course policy, stating a weak inductive hypothesis triggers an automatic zero,
unless the proof is otherwise perfect.

i

— Ambiguous induction hypotheses like “Assume the statement is true for all k < n.’
are not valid. What statement? The theorem you're trying to prove doesn’t use the
variable k, so that can’t possibly be the statement you mean.

— Meaningless induction hypotheses like “Assume that k is true for all k < n” are not
valid. Only propositions can be true or false; k is an integer, not a proposition.

— False induction hypotheses like “Assume that k < n for all k” are not valid. The
inequality k < n does not hold for all k, because it does not hold when k =n + 5.

* 1 point for explicit and clearly exhaustive case analysis.

— No penalty for overlapping or redundant cases. However, mistakes in redundant cases
are still penalized.

2 points for the base case(s).

2 point for correctly applying the stated inductive hypothesis.

— It is not possible to correctly apply an invalid inductive hypothesis.

— No credit for correctly applying a different induction hypothesis than the one stated.

3 points for other details of the inductive case(s).

CS 473

Standard exam rubrics Spring 2016

Dynamic Programming

6 points for a correct recurrence, described either using functional notation or as
pseudocode for a recursive algorithm.

+ 1 point for a clear English description of the function you are trying to evaluate.
(Otherwise, we don’t even know what you're trying to do.) Automatic zero if the
English description is missing.

+ 1 point for stating how to call your recursive function to get the final answer.
+ 1 point for the base case(s). — for one minor bug, like a typo or an off-by-one error.

+ 3 points for the recursive case(s). —1 for each minor bug, like a typo or an off-by-one
error. No credit for the rest of the problem if the recursive case(s) are incorrect.

4 points for iterative details
+ 1 point for describing the memoization data structure; a clear picture may be sufficient.

+ 2 points for describing a correct evaluation order; a clear picture may be sufficient. If
you use nested loops, be sure to specify the nesting order.

+ 1 point for running time

Proofs of correctness are not required for full credit on exams, unless the problem specifically
asks for one.

Do not analyze (or optimize) space.

For problems that ask for an algorithm that computes an optimal structure—such as a
subset, partition, subsequence, or tree—an algorithm that computes only the value or cost
of the optimal structure is sufficient for full credit, unless the problem says otherwise.

Official solutions usually include pseudocode for the final iterative dynamic programming
algorithm, but iterative psuedocode is not required for full credit. If your solution
includes iterative pseudocode, you do not need to separately describe the recurrence,
memoization structure, or evaluation order. However, you must give an English description
of the underlying recursive function.

Official solutions will provide target time bounds. Algorithms that are faster than this
target are worth more points; slower algorithms are worth fewer points, typically by 2 or 3
points (out of 10) for each factor of n. Partial credit is scaled to the new maximum score.
All points above 10 are recorded as extra credit.

We rarely include these target time bounds in the actual questions, because when we
have included them, significantly more students turned in algorithms that meet the target
time bound but didn’t work (earning o/10) instead of correct algorithms that are slower
than the target time bound (earning 8/10).

CS 473 Standard exam rubrics Spring 2016

Graph Reductions

For problems solved by reducing them to a standard graph algorithm covered either in class or
in a prerequisite class (for example: shortest paths, topological sort, minimum spanning trees,
maximum flows, bipartite maximum matching, vertex-disjoint paths, . ..):

* 1 point for listing the vertices of the graph. (If the original input is a graph, describing
how to modify that graph is fine.)

* 1 point for listing the edges of the graph, including whether the edges are directed or
undirected. (If the original input is a graph, describing how to modify that graph is fine.)

* 1 point for describing appropriate weights and/or lengths and/or capacities and/or
costs and/or demands and/or whatever for the vertices and edges.

* 2 points for an explicit description of the problem being solved on that graph. (For
example: “We compute the maximum number of vertex-disjoint paths in G from v to z.”)

* 3 points for other algorithmic details, assuming the rest of the reduction is correct.

+ 1 point for describing how to build the graph from the original input (for example:
“by brute force”)

+ 1 point for describing the algorithm you use to solve the graph problem (for example:
“Orlin’s algorithm” or “as described in class”)

+ 1 point for describing how to extract the output for the original problem from the
output of the graph algorithm.

* 2 points for the running time, expressed in terms of the original input parameters, not
just V and E.

* If the problem explicitly asks for a proof of correctness, divide all previous points in
half and add 5 points for proof of correctness. These proofs almost always have two
parts; for example, for algorithms that return TRUE or FALSE:

- 2% points for proving that if your algorithm returns TRUE, then the correct answer is
TRUE.

— 2% points for proving that if your algorithm returns FALSE, then the correct answer is
FALSE.

These proofs do not need to be as detailed as in the homeworks; we are really just looking
for compelling evidence that you understand why your reduction is correct.

* It is still possible to get partial credit for an incorrect algorithm. For example, if you
describe an algorithm that sometimes reports false positives, but you prove that all FALSE
answers are correct, you would still get 2% points for half of the correctness proof.

CS 473 Standard exam rubrics Spring 2016

NP-Hardness Reductions

For problems that ask “Prove that X is NP-hard™:

* 4 points for the polynomial-time reduction:

— 1 point for explicitly naming the NP-hard problem Y to reduce from. You may use any
of the problems listed in the lecture notes; a list of NP-hard problems will appear on
the back page of the exam.

- 2 points for describing the polynomial-time algorithm to transform arbitrary instances
of Y into inputs to the black-box algorithm for X

— 1 point for describing the polynomial-time algorithm to transform the output of the
black-box algorithm for X into the output for Y.

— Reductions that call the black-box algorithm for X more than once are perfectly
acceptable. You do not need to explicitly analyze the running time of your resulting
algorithm for Y, but it must be polynomial in the size of the input instance of Y.

* 6 points for the proof of correctness. This is the entire point of the problem. These
proofs always have two parts; for example, if X and Y are both decision problems:

— 3 points for proving that your reduction transforms positive instances of Y into positive
instances of X.
— 3 points for proving that your reduction transforms negative instances of Y into

negative instances of X.

These proofs do not need to be as detailed as in the homeworks; however, it must be
clear that you have at least considered all possible cases. We are really just looking for
compelling evidence that you understand why your reduction is correct.

* Itisstill possible to get partial credit for an incorrect reduction. For example, if you describe
a reduction that sometimes reports false positives, but you prove that all FALSE answers are
correct, you would still get 3 points for half of the correctness proof.

* Zero points for reducing X to some NP-hard problem Y.

* Zero points for attempting to solve X.

CS 473 Standard exam rubrics Spring 2016

Approximation Algorithms

For problems that ask you to describe a polynomial-time approximation algorithm for some
NP-hard problem X, analyze its approximation ratio, and prove that your approximation analysis
is correct:

* 4 points for the actual approximation algorithm. You do not need to analyze the
running time of your algorithm (unless we explicitly ask for the running time), but it must
clearly run in polynomial time. If we give you the algorithm, ignore this part and scale the
rest of the rubric up to 10 points.

* 2 points for stating the correct approximation ratio. If we give you the approximation
ratio, ignore this part and scale the rest of the rubric up to 10 points.

* 4 points for proving that the stated approximation ratio is correct. If we do not
explicitly ask for a proof, ignore this part and scale the rest of the rubric up to 10 points.

For example, suppose we give you an algorithm and ask for its approximation ratio, but we
do not explicitly ask for a proof. If the given algorithm is a 3-approximation algorithm, then you
would get full credit for writing “3”.

CS 473 Midterm 1 Questions Spring 2016

Write your answers in the separate answer booklet.
Please return this question sheet and your cheat sheet with your answers.

1. For any positive integer n, the nth Fibonacci string F,, is defined recursively as follows,
where x ¢ y denotes the concatenation of strings x and y:

F]_ =0
Fz =1
F,:=F, {*F, 5, foralln>3

For example, F; =10 and F, = 101.

(a) What is Fg?
(b) Prove that every Fibonacci string except F; starts with 1.

(c) Prove that no Fibonacci string contains the substring 00.

2. You have reached the inevitable point in the semester where it is no longer possible to
finish all of your assigned work without pulling at least a few all-nighters. The problem
is that pulling successive all-nighters will burn you out, so you need to pace yourself (or
something).

Let’s model the situation as follows. There are n days left in the semester. For simplicity,
let’s say you are taking one class, there are no weekends, there is an assignment due every
single day until the end of the semester, and you will only work on an assignment the day
before it is due. For each day i, you know two positive integers:

¢ Score[i]is the score you will earn on the ith assignment if you do not pull an all-nighter
the night before.

* Bonus[i] is the number of additional points you could potentially earn if you do pull
an all-nighter the night before.

However, pulling multiple all-nighters in a row has a price. If you turn in the ith assignment
immediately after pulling k consecutive all-nighters, your actual score for that assignment
will be (Score[i]+ Bonus[i])/2F 1.

Design and analyze an algorithm that computes the maximum total score you can
achieve, given the arrays Score[1..n] and Bonus[1..n] as input.

CS 473

Midterm 1 Questions Spring 2016

3.

4.

The following algorithm finds the smallest element in an unsorted array. The subroutine
SHUFFLE randomly permutes the input array A; every permutation of A is equally likely.

RanpoMMIN(A[1..n]):
min < o0
SHUFFLE(A)

forie—1ton
ifAli] < min
min <« A[i] (%)
return min

In the following questions, assume all elements in the input array A[] are distinct.

(a) In the worst case, how many times does RANDOMMIN execute line (x)?

(b) For each index i, let X; =1 if line () is executed in the ith iteration of the for loop,
and let X; = 0 otherwise. What is Pr[X; = 1]? [Hint: First consider i =1 and i =n.]

(c) What is the exact expected number of executions of line (x)?

(d) Prove that line (x) is executed O(logn) times with high probability, assuming the
variables X; are mutually independent.

(e) [Extra credit] Prove that the variables X; are mutually independent.
[Hint: Finish the rest of the exam first!]

Your eight-year-old cousin Elmo decides to teach his favorite new card game to his baby
sister Daisy. At the beginning of the game, n cards are dealt face up in a long row. Each
card is worth some number of points, which may be positive, negative, or zero. Then Elmo
and Daisy take turns removing either the leftmost or rightmost card from the row, until all
the cards are gone. At each turn, each player can decide which of the two cards to take.
When the game ends, the player that has collected the most points wins.

Daisy isn’t old enough to get this whole “strategy” thing; she’s just happy to play with
her big brother. When it’s her turn, she takes the either leftmost card or the rightmost card,
each with probability 1/2.

Elmo, on the other hand, really wants to win. Having never taken an algorithms class,
he follows the obvious greedy strategy—when it’s his turn, ElImo always takes the card
with the higher point value.

Describe and analyze an algorithm to determine Elmo’s expected score, given the initial
sequence of n cards as input. Assume Elmo moves first, and that no two cards have the
same value.

For example, suppose the initial cards have values 1,4, 8,2. Elmo takes the 2, because
it’s larger than 1. Then Daisy takes either 1 or 8 with equal probability. If Daisy takes
the 1, then Elmo takes the 8; if Daisy takes the 8, then Elmo takes the 4. Thus, EImo’s
expected score is 2+ (8 +4)/2 = 8.

CS 473

Midterm 2 Questions Spring 2016

Write your answers in the separate answer booklet.
Please return this question sheet and your cheat sheet with your answers.
Red text reflects corrections or clarifications given during the actual exam.

1.

2.

Suppose we insert n distinct items into an initially empty hash table of size m > n, using
an ideal random hash function h. Recall that a collision is a set of two distinct items {x, y}
in the table such that h(x) = h(y).

(a) What is the exact expected number of collisions?
(b) Estimate the probability that there are no collisions. [Hint: Use Markov’s inequality.]

(c) Estimate the largest value of n such that the probability of having no collisions is
at least 1 —1/n. Your answer should have the form n = O(f(m)) for some simple
function f.

(d) Fix an integer k > 1. A k-way collision is a set of k distinct items {x,...,x;} that all
have the same hash value: h(x;) = h(x,) =--- = h(x};). Estimate the largest value
of n such that the probability of having no k-way collisions is at least 1 —1/n. Your
answer should have the form n = O(f (m, k)) for some simple function f. [Hint: You
may want to repeat parts (a) and (b).]

Quentin, Alice, and the other Brakebills Physical Kids are planning an excursion through
the Neitherlands to Fillory. The Neitherlands is a vast, deserted city composed of several
plazas, each containing a single fountain that can magically transport people to a different
world. Adjacent plazas are connected by gates, which have been cursed by the Beast.
The gates open for only five minutes every hour, all at the same time. During those five
minutes, if more than one person passes through any single gate, the Beast will detect
their presence.0 However, people can safely pass through different gates at the same time.
Moreover, anyone attempting to pass through more than one gate in the same five-minute
period will turn into a niffin.o

You are given a map of the Neitherlands, which is a graph G with a vertex for each
fountain and an edge for each gate, with the fountains to Earth and Fillory clearly marked;
you are also given a positive integer h. Describe and analyze an algorithm to compute the
maximum number of people that can walk from the Earth fountain to the Fillory fountain
in h hours, without anyone alerting the Beast or turning into a niffin.

OThis is very bad.
OThis is very bad.

CS 473 Midterm 2 Questions Spring 2016

3. Recall that a Bloom filter is an array B[1..m] of bits, together with a collection of k
independent ideal random hash functions hq, h,, ..., h;. To insert an item x into a Bloom
filter, we set B[h;(x)] « 1 for every index i. To test whether an item x belongs to a set
represented by a Bloom filter, we check whether B[h;(x)] = 1 for every index i. This
algorithm always returns TRUE if x is in the set, but may return either TRUE or FALSE
when x is not in the set. Thus, there may be false positives, but no false negatives.

If there are n distinct items stored in the Bloom filter, then the probability of a false
positive is (1 — p)¥, where p &~ e /™ is the probability that B[j] = 0 for any particular
index j. In particular, if we set k = (m/n)1In2, then p = 1/2, and the probability of a false
positive is (1/2)M/M2 ~, (0.61850)™/™.

After months spent lovingly crafting a Bloom filter of size m for a set S of n items,
using exactly k = (m/n)1n 2 hash functions (so p = 1/2), your boss tells you that you must
reduce the size of your Bloom filter from m bits down to m/2 bits. Unfortunately, you no
longer have the original set S, and your company’s product ships tomorrow; you have to do
something quick and dirty. Fortunately, your boss has a couple of ideas.

(a) First your boss suggests simply discarding half of the Bloom filter, keeping only the
subarray B[1..m/2]. Describe an algorithm to check whether a given item x is an
element of the original set S, using only this smaller Bloom filter. As usual, if x €S,
your algorithm must return TRUE.

(b) What is the probability that your algorithm returns TRUE when x ¢ S?

(c) Next your boss suggests merging the two halves of your old Bloom filter, defining
a new array B’[1..m/2] by setting B’[i] < B[i]V B[i + m/2] for all i. Describe an
algorithm to check whether a given item x is an element of the original set S, using
only this smaller Bloom filter B’. As usual, if x € S, your algorithm must return TRUE.

(d) What is the probability that your algorithm returns TRUE when x & S?

4. An n x n grid is an undirected graph with n? vertices organized into n rows and n columns.
We denote the vertex in the ith row and the jth column by (i, j). Every vertex (i, j) has
exactly four neighbors (i —1,j), (i +1,j), (i,j— 1), and (i, j + 1), except the boundary
vertices, for whichi=1,i=n,j=1,0or j=n.

Let (x1,y1),(x2,¥2), ..., (%, ¥m) be distinct vertices, called terminals, in the n x n grid.
The escape problem is to determine whether there are m vertex-disjoint paths in the grid
that connect these terminals to any m distinct boundary vertices. Describe and analyze an
efficient algorithm to solve the escape problem.

A positive instance of the escape problem, and its solution.

CS 473 Final Exam Questions Spring 2016

Write your answers in the separate answer booklet.
Please return this question handout and your cheat sheets with your answers.

1. Let G = (V, E) be an arbitrary undirected graph. A triple-Hamiltonian circuit in G is a
closed walk in G that visits every vertex of G exactly three times. Prove that it is NP-hard
to determine whether a given undirected graph has a triple-Hamiltonian circuit. [Hint:
Modify your reduction for double-Hamiltonian circuits from Homework 10.]

2. Marie-Joseph Paul Yves Roch Gilbert du Motier, Marquis de Lafayette, colonial America’s
favorite fighting Frenchman, needs to choose a subset of his ragtag volunteer army of m
soldiers to complete a set of n important tasks, like “go to France for more funds” or “come
back with more guns”. Each task requires a specific set of skills, such as “knows what to
do in a trench” or “ingenuitive and fluent in French”. For each task, exactly k soldiers are
qualified to complete that task.

Unfortunately, Lafayette’s soldiers are extremely lazy. For each task, if Lafayette chooses
more than one soldier qualified for that task, each of them will assume that someone else
will take on that task, and so the task will never be completed. A task will be completed if
and only if exactly one of the chosen soldiers has the necessary skills for that task.

So Lafayette needs to choose a subset S of soldiers that maximizes the number of
tasks for which exactly one soldier in S is qualified. Not surprisingly, Lafayette’s problem is
NP-hard.

(a) Suppose Lafayette chooses each soldier independently with probability p. What is
the exact expected number of tasks that will be completed, in terms of p and k?

(b) What value of p maximizes this expected value?

(c) Describe a randomized polynomial-time O(1)-approximation algorithm for Lafayette’s
problem. What is the expected approximation ratio for your algorithm?

3. Suppose we are given a set of n rectangular boxes, each specified by their height, width,
and depth in centimeters. All three dimensions of each box lie strictly between 10cm and
2o0cm, and all 3n dimensions are distinct. As you might expect, one box can be nested
inside another if the first box can be rotated so that is is smaller in every dimension than the
second box. Boxes can be nested recursively, but two boxes cannot be nested side-by-side
inside a third box. A box is visible if it is not nested inside another box.

Describe and analyze an algorithm to nest the boxes, so that the number of visible
boxes is as small as possible.

CS 473 Final Exam Questions Spring 2016

4. Hercules Mulligan, a tailor spyin’ on the British government, has determined a set of routes
and towns that the British army plans to use to move their troops from Charleston, South
Carolina to Yorktown, Virginia. (He took their measurements, information, and then he
smuggled it.) The American revolutionary army wants to set up ambush points in some of
these towns, so that every unit of the British army will face at least one ambush before
reaching Yorktown. On the other hand, General Washington wants to leave as many troops
available as possible to help defend Yorktown when the British army inevitably arrives.

Describe an efficient algorithm that computes the smallest number of towns where
the revolutionary army should set up ambush points. The input to your algorithm is
Mulligan’s graph of towns (vertices) and routes (edges), with Charleston and Yorktown
clearly marked.

5. Consider the following randomized algorithm to approximate the smallest vertex cover in
an undirected graph G = (V, E). For each vertex v € V, define the priority of v to be a real
number between 0 and 1, chosen independently and uniformly at random. Finally, let S
be the subset of vertices with higher priority than at least one of their neighbors:

S = {v ev ’ priority(v) > min priority(u)}
uveE

(a) What is the probability that the set S is a vertex cover of G? Prove your answer is
correct. (Your proof should be short.)

(b) Suppose the input graph G is a cycle of length n. What is the exact expected size of S?

(c) Suppose the input graph G is a star: a tree with one vertex of degreen—1 and n—1
vertices of degree 1. What is the exact probability that S is the smallest vertex cover

of G?
(d) Again, suppose G is a star. Suppose we run the randomized algorithm N times,
generating a sequence of subsets S;,S,,...,Sy. How large must N be to guarantee

with high probability that some S; is the minimum vertex cover of G?

6. After the Revolutionary War, Alexander Hamilton’s biggest rival as a lawyer was Aaron Burr.
(Sir!) In fact, the two worked next door to each other. Unlike Hamilton, Burr cannot work
non-stop; every case he tries exhausts him. The bigger the case, the longer he must rest
before he is well enough to take the next case. (Of course, he is willing to wait for it.) If a
case arrives while Burr is resting, Hamilton snatches it up instead.

Burr has been asked to consider a sequence of n upcoming cases. He quickly computes
two arrays profit[1..n] and skip[1..n], where for each index i,

* profit[i] is the amount of money Burr would make by taking the ith case, and

e skip[i] is the number of consecutive cases Burr must skip if he accepts the ith case.

That is, if Burr accepts the ith case, he cannot accept cases i + 1 through i + skip[i].

Design and analyze an algorithm that determines the maximum total profit Burr can secure
from these n cases, using his two arrays as input.

