Write your answers in the separate answer booklet.

Please return this question sheet and your cheat sheet with your answers.

1. Clearly indicate the following structures in the directed graph on the right. Some of these subproblems may have more than one correct answer.
(a) A maximum (s, t)-flow f.
(b) The residual graph of f.
(c) A minimum (s, t)-cut.

2. Recall that a family \mathcal{H} of hash functions is universal if $\operatorname{Pr}_{h \in \mathcal{H}}[h(x)=h(y)] \leq 1 / m$ for all distinct items $x \neq y$, where m is the size of the hash table. For any fixed hash function h, a collision is an unordered pair of distinct items $x \neq y$ such that $h(x)=h(y)$.

Suppose we hash a set of n items into a table of size $m=2 n$, using a hash function h chosen uniformly at random from some universal family. Assume \sqrt{n} is an integer.
(a) Prove that the expected number of collisions is at most $n / 4$.
(b) Prove that the probability that there are at least $n / 2$ collisions is at most $1 / 2$.
(c) Prove that the probability that any subset of more than \sqrt{n} items all hash to the same address is at most 1/2. [Hint: Use part (b).]
(d) [The actual exam question assumed only pairwise independence of hash values; under this weaker assumption, the claimed result is actually false. Everybody got extra credit for this part.]
Now suppose we choose h at random from a strongly 4-universal family of hash functions, which means for all distinct items w, x, y, z and all addresses i, j, k, l, we have

$$
\operatorname{Pr}_{h \in \mathcal{H}}[h(w)=i \wedge h(x)=j \wedge h(y)=k \wedge h(z)=\ell]=\frac{1}{m^{4}} .
$$

Prove that the probability that any subset of more than \sqrt{n} items all hash to the same address is at most $O(1 / n)$.
[Hint: Use Markov's and Chebyshev's inequalities. All four statements have short elementary proofs.]
3. Suppose we have already computed a maximum flow f^{*} in a flow network G with integer capacities. Assume all flow values $f^{*}(e)$ are integers.
(a) Describe and analyze an algorithm to update the maximum flow after the capacity of a single edge is increased by 1.
(b) Describe and analyze an algorithm to update the maximum flow after the capacity of a single edge is decreased by 1 .

Your algorithms should be significantly faster than recomputing the maximum flow from scratch.
4. Let T be a treap with n vertices.
(a) What is the exact expected number of leaves in T ?
(b) What is the exact expected number of nodes in T that have two children?
(c) What is the exact expected number of nodes in T that have exactly one child?

You do not need to prove that your answers are correct. [Hint: What is the probability that the node with the kth smallest search key has no children, one child, or two children?]
5. There is no problem 5 .

