
CS 473 Homework 5 (due March 9, 2009) Spring 2009

CS 473: Undergraduate Algorithms, Spring 2009
Homework 5

Written solutions due Tuesday, March 9, 2009 at 11:59:59pm.

1. Remember the difference between stacks and queues? Good.

(a) Describe how to implement a queue using two stacks and O(1) additional memory, so that
the amortized time for any enqueue or dequeue operation is O(1). The only access you have
to the stacks is through the standard methods PUSH and POP.

(b) A quack is an abstract data type that combines properties of both stacks and queues. It can
be viewed as a list of elements written left to right such that three operations are possible:

• Push: add a new item to the left end of the list;
• Pop: remove the item on the left end of the list;
• Pull: remove the item on the right end of the list.

Implement a quack using three stacks and O(1) additional memory, so that the amortized
time for any push, pop, or pull operation is O(1). Again, you are only allowed to access the
stacks through the standard methods PUSH and POP.

2. In a dirty binary search tree, each node is labeled either clean or dirty. The lazy deletion scheme
used for scapegoat trees requires us to purge the search tree, keeping all the clean nodes and
deleting all the dirty nodes, as soon as half the nodes become dirty. In addition, the purged tree
should be perfectly balanced.

Describe and analyze an algorithm to purge an arbitrary n-node dirty binary search tree in
O(n) time, using at most O(log n) space (in addition to the tree itself). Don’t forget to include the
recursion stack in your space bound. An algorithm that uses Θ(n) additional space in the worst
case is worth half credit.

3. Some applications of binary search trees attach a secondary data structure to each node in the
tree, to allow for more complicated searches. Maintaining these secondary structures usually
complicates algorithms for keeping the top-level search tree balanced.

Let T be an arbitrary binary tree. Suppose every node v in T stores a secondary structure
of size O(size(v)), which can be built in O(size(v)) time, where size(v) denotes the number of
descendants of v. Performing a rotation at any node v now requires O(size(v)) time, because we
have to rebuild one of the secondary structures.

(a) [1 pt] Overall, how much space does this data structure use in the worst case?

(b) [1 pt] How much space does this structure use if the primary search tree T is perfectly
balanced?

(c) [2 pts] Suppose T is a splay tree. Prove that the amortized cost of a splay (and therefore of
a search, insertion, or deletion) is Ω(n). [Hint: This is easy!]

1



CS 473 Homework 5 (due March 9, 2009) Spring 2009

(d) [3 pts] Now suppose T is a scapegoat tree, and that rebuilding the subtree rooted at v
requires Θ(size(v) log size(v)) time (because we also have to rebuild the secondary structures
at every descendant of v). What is the amortized cost of inserting a new element into T?

(e) [3 pts] Finally, suppose T is a treap. What’s the worst-case expected time for inserting a new
element into T?

2


