CS 473: Undergraduate Algorithms, Spring 2009 Homework 3

Written solutions due Tuesday, February 17, 2009 at 11:59:59pm.

1. Redo Homework 2, but now with dynamic programming!
(a) Describe and analyze an efficient algorithm to compute the minimum number of 1's in a basic arithmetic expression whose value is a given positive integer.
(b) Describe and analyze an efficient algorithm to compute the length of the longest bitonic subsequence of a given input sequence.
(c) Describe and analyze an efficient algorithm to compute the minimum number of palindromes that make up a given input string.

Please see Homework 2 for more detailed descriptions of each problem. Solutions for Homework 2 will be posted Friday, after the HW2 oral presentations. You may (and should!) use anything from those solutions without justification.
2. Let T be a rooted tree with integer weights on its edges, which could be positive, negative, or zero. Design an algorithm to find the minimum-length path from a node in T down to one of its descendants. The length of a path is the sum of the weights of its edges. For example, given the tree shown below, your algorithm should return the number -12 . For full credit, your algorithm should run in $O(n)$ time.

The minimum-weight downward path in this tree has weight -12 .
3. Describe and analyze an efficient algorithm to compute the longest common subsequence of three given strings. For example, given the input strings EPIDEMIOLOGIST, REFRIGERATION, and SUPERCALIFRAGILISTICEXPIALODOCIOUS, your algorithm should return the number 5, because the longest common subsequence is EIEIO.

