CS 473: Undergraduate Algorithms, Spring 2009 HBS 6.55

- 1. Suppose you are given a directed graph G = (V, E) with non-negative edge lengths; $\ell(e)$ is the length of $e \in E$. You are interested in the shortest path distance between two given locations/nodes s and t. It has been noticed that the existing shortest path distance between s and t in G is not satisfactory and there is a proposal to add exactly one edge to the graph to improve the situation. The candidate edges from which one has to be chosen is given by $E' = \{e_1, e2, \ldots, e_k\}$ and you can assume that $E \cup E' = \emptyset$. The length of the e_i is $\alpha_i \ge 0$. Your goal is figure out which of these k edges will result in the most reduction in the shortest path distance from s to t. Describe an algorithm for this problem that runs in time $O((m + n) \log n + k)$ where m = |E| and n = |V|. Note that one can easily solve this problem in $O(k(m + n) \log n)$ by running Dijkstra's algorithm k times, one for each G_i where G_i is the graph obtained by adding e_i to G.
- 2. Let *G* be an undirected graph with non-negative edge weights. Let *s* and *t* be two vertices such that the shortest path between *s* and *t* in *G* contains all the vertices in the graph. For each edge *e*, let $G \setminus e$ be the graph obtained from *G* by deleting the edge *e*. Design an $O(E \log V)$ algorithm that finds the shortest path distance between *s* and *t* in $G \setminus e$ for all *e*. [*Note that you need to output E distances, one for each graph G \ e*]
- 3. Given a Directed Acyclic Graph (DAG) and two vertices *s* and *t* you want to determine if there is an *s* to *t* path that includes at least *k* vertices.