CS 473: Undergraduate Algorithms, Spring 2009 HBS 2

- 1. Consider two horizontal lines l_1 and l_2 in the plane. There are n points on l_1 with *x*-coordinates $A = a_1, a_2, \ldots, a_n$ and there are *n* points on l_2 with *x*-coordinates $B = b_1, b_2, \ldots, b_n$. Design an algorithm to compute, given *A* and *B*, a largest set *S* of non-intersecting line segments subject to the following restrictions:
 - (a) Any segment in *S* connects a_i to b_i for some $i(1 \le i \le n)$.
 - (b) Any two segments in *S* do not intersect.
- 2. Consider a $2^n x 2^n$ chess board with one (arbitrarily chosen) square removed. Prove that any such chessboard can be tiled without gaps or overlaps by L-shaped pieces of 3 squares each. Can you give an algorithm to do the tiling?
- 3. Given a string of letters $Y = y_1 y_2 \dots y_n$, a segmentation of Y is a partition of its letters into contiguous blocks of letters (also called words). Each word has a quality that can be computed by a given oracle (e.g. you can call *quality("meet")* to get the quality of the word "meet"). The quality of a segmentation is equal to the sum over the qualities of its words. Each call to the oracle takes linear time in terms of the argument; that is quality(*S*) takes O(|S|).

Using the given oracle, give an algorithm that takes a string *Y* and computes a segmentation of maximum total quality.