CS 473: Undergraduate Algorithms, Spring 2009 HBS 2

1. Consider two horizontal lines l_{1} and l_{2} in the plane. There are n points on l_{1} with x-coordinates $A=a_{1}, a_{2}, \ldots, a_{n}$ and there are n points on l_{2} with x-coordinates $B=b_{1}, b_{2}, \ldots, b_{n}$. Design an algorithm to compute, given A and B, a largest set S of non-intersecting line segments subject to the following restrictions:
(a) Any segment in S connects a_{i} to b_{i} for some $i(1 \leq i \leq n)$.
(b) Any two segments in S do not intersect.
2. Consider a $2^{n} x 2^{n}$ chess board with one (arbitrarily chosen) square removed. Prove that any such chessboard can be tiled without gaps or overlaps by L-shaped pieces of 3 squares each. Can you give an algorithm to do the tiling?
3. Given a string of letters $Y=y_{1} y_{2} \ldots y_{n}$, a segmentation of Y is a partition of its letters into contiguous blocks of letters (also called words). Each word has a quality that can be computed by a given oracle (e.g. you can call quality("meet") to get the quality of the word "meet"). The quality of a segmentation is equal to the sum over the qualities of its words. Each call to the oracle takes linear time in terms of the argument; that is quality (S) takes $O(|S|)$.

Using the given oracle, give an algorithm that takes a string Y and computes a segmentation of maximum total quality.

