CS 473: Undergraduate Algorithms, Spring 2009 HBS 10

1. Consider the following problem, called BOX-DEPTH: Given a set of n axis-aligned rectangles in the plane, how big is the largest subset of these rectangles that contain a common point?
(a) Describe a polynomial-time reduction from BOX-DEPTH to MAX-CLIQUE.
(b) Describe and analyze a polynomial-time algorithm for BOX-DEPTH. [Hint: $O\left(n^{3}\right)$ time should be easy, but $O(n \log n)$ time is possible.]
(c) Why don't these two results imply that $P=N P$?
2. Suppose you are given a magic black box that can determine in polynomial time, given an arbitrary weighted graph G, the length of the shortest Hamiltonian cycle in G. Describe and analyze a polynomial-time algorithm that computes, given an arbitrary weighted graph G, the shortest Hamiltonian cycle in G, using this magic black box as a subroutine.
3. Prove that the following problems are NP-complete.
(a) Given an undirected graph G, does G have a spanning tree in which every node has degree at most 17 ?
(b) Given an undirected graph G, does G have a spanning tree with at most 42 leaves?
