CS 473G: Graduate Algorithms, Spring 2007
Homework 5

Due Thursday, April 17, 2007

Please remember to submit separate, individually stapled solutions to each problem.

Unless a problem specifically states otherwise, you can assume the function RANDOM(k),
which returns an integer chosen independently and uniformly at random from the set
{1,2,...,k}, in O(1) time. For example, to perform a fair coin flip, you would call
RANDOM(2).

. Suppose we want to write an efficient function RANDOMPERMUTATION(n) that returns a per-
mutation of the integers (1, ...,n) chosen uniformly at random.

(a) What is the expected running time of the following RANDOMPERMUTATION algorithm?

RANDOMPERMUTATION(n):

fori«— 1ton
w[i] — EMPTY

fori —1ton
j — RANDOM(n)
while (#[j] # EMPTY)

j < RANDOM(n)

nlj) i

return m

(b) Consider the following partial implementation of RANDOMPERMUTATION.

RANDOMPERMUTATION(n):
fori«—1ton
Ali] < RANDOM(n)
7 < SOMEFUNCTION(A)
return 7

Prove that if the subroutine SOMEFUNCTION is deterministic, then this algorithm cannot
be correct. [Hint: There is a one-line proof.]

(c) Describe and analyze an RANDOMPERMUTATION algorithm whose expected worst-case
running time is O(n).

*(d) [Extra Credit] Describe and analyze an RANDOMPERMUTATION algorithm that uses only
fair coin flips; that is, your algorithm can’t call RANDOM(k) with & > 2. Your algorithm
should run in O(nlogn) time with high probability.

CS 473G

Homework 5 (due April 17, 2007) Spring 2007

2. A meldable priority queue stores a set of keys from some totally-ordered universe (such as the
integers) and supports the following operations:

MAKEQUEUE: Return a new priority queue containing the empty set.
FINDMIN(Q): Return the smallest element of) (if any).
DELETEMIN(Q®): Remove the smallest element in @ (if any).
INSERT(Q, x): Insert element x into @, if it is not already there.

DECREASEKEY(Q, z,y): Replace an element = € (Q with a smaller element y. (If y > =,
the operation fails.) The input is a pointer directly to the node in) that contains z.

DELETE(Q, x): Delete the element x € (). The input is a pointer directly to the node in @
that contains .

MELD(Q1, Q2): Return a new priority queue containing all the elements of)1 and Q»;
this operation destroys 21 and Q.

A simple way to implement such a data structure is to use a heap-ordered binary tree, where
each node stores a key, along with pointers to its parent and two children. MELD can be
implemented using the following randomized algorithm:

(a)

(b)
(©

MELD(Q1, Qa):
if Q1 is empty, return Q2
if Q5 is empty, return Q

if key(Q1) > key(Q2)
swap @1 < Q2
with probability 1/2
left(Q1) < MELD(left(Q1), Q2)

else
right(Q1) < MELD(right(Q1), Q2)

return (),

Prove that for any heap-ordered binary trees); and Q2 (not just those constructed by
the operations listed above), the expected running time of MELD(Q1,RQ2) is O(logn),
where n = |Q1| + |Q2|. [Hint: How long is a random root-to-leaf path in an n-node
binary tree if each left/right choice is made with equal probability?]

Prove that MELD(Q1, Q2) runs in O(log n) time with high probability.

Show that each of the other meldable priority queue operations can be implemented
with at most one call to MELD and O(1) additional time. (This implies that every opera-
tion takes O(logn) time with high probability.)

3. Prove that GUESSMINCUT returns the second smallest cut in its input graph with probability
Q(1/n?). (The second smallest cut could be significantly larger than the minimum cut.)

CS 473G Homework 5 (due April 17, 2007) Spring 2007

4.

*6.

A heater is a sort of dual treap, in which the priorities of the nodes are given by the user,
but their search keys are random (specifically, independently and uniformly distributed in the
unit interval [0, 1]).
(a) Prove that for any r, the node with the rth smallest priority has expected depth O(log r).
(b) Prove that an n-node heater has depth O(log n) with high probability.
(c) Describe algorithms to perform the operations INSERT and DELETEMIN in a heater. What
are the expected worst-case running times of your algorithms?

You may assume all priorities and keys are distinct. [Hint: Cite the relevant parts (but only
the relevant parts!) of the treap analysis instead of repeating them.]

. Let n be an arbitrary positive integer. Describe a set 7 of binary search trees with the following

properties:

e Every tree in 7 has n nodes, which store the search keys 1,2,3,...,n.

e For any integer k, if we choose a tree uniformly at random from 7, the expected depth
of node £ in that tree is O(logn).

e Every tree in 7 has depth Q(\/n).

(This is why we had to prove via Chernoff bounds that the maximum depth of an n-node
treap is O(log n) with high probability.)

[Extra Credit] Recall that F, denotes the kth Fibonacci number: Fy, = 0, F; = 1, and
Fy = Fy_1 + Fj_» for all £ > 2. Suppose we are building a hash table of size m = F}, using
the hash function

h(z) = (Fg—1 -) mod F,

Prove that if the consecutive integers 0, 1,2, ..., F;, — 1 are inserted in order into an initially
empty table, each integer is hashed into one of the largest contiguous empty intervals in the
table. Among other things, this implies that there are no collisions.

For example, when m = 13, the hash table is filled as follows.

(ol [[[[T [[[[T [|
(ol [[[[[[[1[[[[|
(o[[2] [[[[1] [[[|
(ol [[2[[[[[1[[[3]]
(o[[[2] [[4] [1] [[3] |
(o5 [2[] [T[4 [1[] [[3]]
(o5 [2] [[4] [1[6] [3] |
(of[5] [2]7] [4] [1]6] [3] |
(o5 [2[7] [4] [1[6] [3]38]
(o5 [2[7] [4[9f[1[6] [3]38]
(o[5J10[2]7] [4[9[1[]6] [3][8]
(0[5 [10[2[7] [4[9[1[6][11]3]38]
[o[5 w027 [12][4]9]1[6]11]3]8]

