CS 473G Homework 2 (due January 30, 2007) Spring 2007

CS 473G: Graduate Algorithms, Spring 2007
Homework 2

Due Tuesday, February 20, 2007

Remember to submit separate, individually stapled solutions to each problem.

As a general rule, a complete full-credit solution to any homework problem should fit
into two typeset pages (or five hand-written pages). If your solution is significantly
longer than this, you may be including too much detail.

*2.

. Consider a restricted variant of the Tower of Hanoi puzzle, where the three needles are ar-

ranged in a triangle, and you are required to move each disk counterclockwise. Describe an
algorithm to move a stack of n disks from one needle to another. Exactly how many moves
does your algorithm perform? To receive full credit, your algorithm must perform the mini-
mum possible number of moves. [Hint: Your answer will depend on whether you are moving
the stack clockwise or counterclockwise.]

A top view of the first eight moves in a counterclockwise Towers of Hanoi solution

You find yourself working for The Negation Company (“We Contradict Everything. .. Not!”),
the world’s largest producer of multi-bit Boolean inverters. Thanks to a recent mining discov-
ery, the market prices for amphigen and opoterium, the key elements used in AND and OR
gates, have plummeted to almost nothing. Unfortunately, the market price of inverton, the
essential element required to build NOT gates, has recently risen sharply as natural supplies
are almost exhausted. Your boss is counting on you to radically redesign the company’s only
product in response to these radically new market prices.

Design a Boolean circuit that inverts n = 2* — 1 bits, using only & NOT gates but any
number of AND and OR gates. The input to your circuit consists of n bits z1,29,...,z,,
and the output consists of n bits y1, 4o, ..., y,, where each output bit y; is the inverse of the
corresponding input bit ;. [Hint: Solve the case k = 2 first.]

CS 473G Homework 2 (due January 30, 2007) Spring 2007

3. (a) Let X[1..m]and Y[1..n| be two arbitrary arrays. A common supersequence of X and Y is
another sequence that contains both X and Y as subsequences. Give a simple recursive
definition for the function scs(X,Y’), which gives the length of the shortest common
supersequence of X and Y.

(b) Call a sequence X|[1..n] oscillating if X[:] < X[i + 1] for all even ¢, and X[i] > X[i + 1]
for all odd . Give a simple recursive definition for the function los(X), which gives the
length of the longest oscillating subsequence of an arbitrary array X of integers.

(c) Call a sequence X|[1..n| of integers accelerating if 2 - X[i| < X[i — 1] + X[i + 1] for all 4.
Give a simple recursive definition for the function Ixs(.X'), which gives the length of the
longest accelerating subsequence of an arbitrary array X of integers.

Each recursive definition should translate directly into a recursive algorithm, but you do not
need to analyze these algorithms. We are looking for correctness and simplicity, not algorithmic
efficiency. Not yet, anyway.

4. Describe an algorithm to solve 3SAT in time O(¢" poly(n)), where ¢ = (1++/5)/2 ~ 1.618034.
[Hint: Prove that in each recursive call, either you have just eliminated a pure literal, or the
formula has a clause with at most two literals. What recurrence leads to this running time?]

5. (a) Describe an algorithm that determines whether a given set of n integers contains two
distinct elements that sum to zero, in O(n logn) time.

(b) Describe an algorithm that determines whether a given set of n integers contains three
distinct elements that sum to zero, in O(n?) time.

(c) Now suppose the input set X contains n integers between —10000n and 10000n. De-
scribe an algorithm that determines whether X contains three distinct elements that
sum to zero, in O(nlogn) time.

For example, if the input setis {—10, -9, -7, -3, 1, 3,5, 11}, your algorithm for part (a) should
return TRUE, because (—3) + 3 = 0, and your algorithms for parts (b) and (c) should return
FALSE, even though (—10) +5+ 5 = 0.

