You have 180 minutes to answer six of these questions.

 Write your answers in the separate answer booklet.1. The d-dimensional hypercube is the graph defined as follows. There are 2^{d} vertices, each labeled with a different string of d bits. Two vertices are joined by an edge if and only if their labels differ in exactly one bit.

The 1-dimensional, 2-dimensional, and 3-dimensional hypercubes.
(a) [8 pts] Recall that a Hamiltonian cycle is a closed walk that visits each vertex in a graph exactly once. Prove that for all $d \geq 2$, the d-dimensional hypercube has a Hamiltonian cycle.
(b) [2 pts] Recall that an Eulerian circuit is a closed walk that traverses each edge in a graph exactly once. Which hypercubes have an Eulerian circuit? [Hint: This is very easy.]
2. The University of Southern North Dakota at Hoople has hired you to write an algorithm to schedule their final exams. Each semester, USNDH offers n different classes. There are r different rooms on campus and t different time slots in which exams can be offered. You are given two arrays $E[1 . . n]$ and $S[1 . . r]$, where $E[i]$ is the number of students enrolled in the i th class, and $S[j]$ is the number of seats in the j th room. At most one final exam can be held in each room during each time slot. Class i can hold its final exam in room j only if $E[i]<S[j]$. Describe and analyze an efficient algorithm to assign a room and a time slot to each class (or report correctly that no such assignment is possible).
3. What is the exact expected number of leaves in an n-node treap? (The answer is obviously at most n, so no partial credit for writing " $O(n)$ ".) [Hint: What is the probably that the node with the k th largest key is a leaf?]
4. A tonian path in a graph G is a simple path in G that visits more than half of the vertices of G. (Intuitively, a tonian path is "most of a Hamiltonian path".) Prove that it is NP-hard to determine whether or not a given graph contains a tonian path.

A tonian path.
5. A palindrome is a string that reads the same forwards and backwards, like x , pop, noon, redivider, or amanaplanacatahamayakayamahatacanalpanama. Any string can be broken into sequence of palindromes. For example, the string bubbaseesabanana ('Bubba sees a banana.') can be broken into palindromes in several different ways; for example,

$$
\begin{gathered}
\text { bub }+ \text { baseesab }+ \text { anana } \\
b+u+b b+a+\text { sees }+a b a+\text { nan }+a \\
b+u+b b+a+\text { sees }+a+b+\text { anana } \\
b+u+b+b+a+s+e+e+s+a+b+a+n+a+n+a
\end{gathered}
$$

Describe and analyze an efficient algorithm to find the smallest number of palindromes that make up a given input string. For example, given the input string bubbaseesabanana, your algorithm would return the integer 3 .
6. Consider the following modification of the 2 -approximation algorithm for minimum vertex cover that we saw in class. The only real change is that we compute a set of edges instead of a set of vertices.

```
ApproxMinMAxMATCHING \((G)\) :
    \(M \leftarrow \varnothing\)
    while G has at least one edge
        \((u, v) \leftarrow\) any edge in \(G\)
        \(G \leftarrow G \backslash\{u, v\}\)
        \(M \leftarrow M \cup\{(u, v)\}\)
    return \(M\)
```

(a) [2 pts] Prove that the output graph M is a matching-no pair of edges in M share a common vertex.
(b) [2 pts] Prove that M is a maximal matching- M is not a proper subgraph of another matching in G.
(c) [6 pts] Prove that M contains at most twice as many edges as the smallest maximal matching in G.

The smallest maximal matching in a graph.
7. Recall that in the standard maximum-flow problem, the flow through an edge is limited by the capacity of that edge, but there is no limit on how much flow can pass through a vertex. Suppose each vertex v in our input graph has a capacity $c(v)$ that limits the total flow through v, in addition to the usual edge capacities. Describe and analyze an efficient algorithm to compute the maximum (s, t)-flow with these additional constraints. [Hint: Reduce to the standard max-flow problem.]

