
CS 373 U Makeup Final Exam Questions (August 2, 2004) Spring 2004

Answer four of these seven problems; the lowest three scores will be dropped.

1. Suppose we are given an array A[1 .. n] with the special property that A[1] ≥ A[2] and
A[n − 1] ≤ A[n]. We say that an element A[x] is a local minimum if it is less than or equal
to both its neighbors, or more formally, if A[x− 1] ≥ A[x] and A[x] ≤ A[x + 1]. For example,
there are five local minima in the following array:

9 7 7 2 1 3 7 5 4 7 3 3 4 8 6 9

We can obviously find a local minimum in O(n) time by scanning through the array. Describe
and analyze an algorithm that finds a local minimum in O(log n) time. [Hint: With the given
boundary conditions, the array must have at least one local minimum. Why?]

2. Consider a random walk on a path with vertices numbered 1, 2, . . . , n from left to right. At
each step, we flip a coin to decide which direction to walk, moving one step left or one step
right with equal probability. The random walk ends when we fall off one end of the path,
either by moving left from vertex 1 or by moving right from vertex n. In Midterm 2, you
were asked to prove that if we start at vertex 1, the probability that the walk ends by falling
off the left end of the path is exactly n/(n + 1).

(a) [6 pts] Prove that if we start at vertex 1, the expected number of steps before the
random walk ends is exactly n. [Hint: Set up and solve a recurrence. Use the result
from Midterm 2.]

(b) [4 pts] Suppose we start at vertex n/2 instead. State and prove a tight Θ-bound on the
expected length of the random walk in this case. [Hint: Set up and solve a recurrence.
Use part (a), even if you can’t prove it.]

3. Prove that any connected acyclic graph with n ≥ 2 vertices has at least two vertices with
degree 1. Do not use the words “tree” of “leaf”, or any well-known properties of trees; your
proof should follow entirely from the definitions.

4. Consider the following sketch of a “reverse greedy” algorithm. The input is a connected
undirected graph G with weighted edges, represented by an adjacency list.

ReverseGreedyMST(G):
sort the edges E of G by weight
for i← 1 to |E|

e← ith heaviest edge in E
if G \ e is connected

remove e from G

(a) [4 pts] What is the worst-case running time of this algorithm? (Answering this question
will require fleshing out a few details.)

(b) [6 pts] Prove that the algorithm transforms G into its minimum spanning tree.

1

CS 373 U Makeup Final Exam Questions (August 2, 2004) Spring 2004

5. SubsetSum and Partition are two closely related NP-hard problems.

• SubsetSum: Given a set X of integers and an integer k, does X have a subset whose
elements sum up to k?

• Partition: Given a set X of integers, can X be partitioned into two subsets whose
sums are equal?

(a) [2 pts] Prove that Partition and SubsetSum are both in NP.

(b) [1 pt] Suppose we knew that SubsetSum is NP-hard, and we wanted to prove that
Partition is NP-hard. Which of the following arguments should we use?

• Given a set X and an integer k, compute a set Y such that Partition(Y) is true
if and only if SubsetSum(X, k) is true.
• Given a set X, construct a set Y and an integer k such that Partition(X) is true

if and only if SubsetSum(Y, k) is true.

(c) [3 pts] Describe and analyze a polynomial-time reduction from Partition to Subset-
Sum. (See part (b).)

(d) [4 pts] Describe and analyze a polynomial-time reduction from SubsetSum to Parti-
tion. (See part (b).)

6. Let P be a set of points in the plane. The convex layers of P are defined recursively as
follows. If P is empty, it ha no convex layers. Otherwise, the first convex layer is the convex
hull of P , and the remaining convex layers are the convex layers of P minus its convex hull.

2

1

1

1

2

2

2

3

3

2

1

1

3

1 1

4

A set of points with 4 convex layers

Describe and analyze an algorithm to compute the number of convex layers of a point set P
as quickly as possible. For example, given the points illustrated above, your algorithm would
return the number 4.

2

CS 373 U Makeup Final Exam Questions (August 2, 2004) Spring 2004

7. (a) [4 pts] Describe and analyze an algorithm to compute the size of the largest connected
component of black pixels in an n× n bitmap B[1 .. n, 1 .. n].
For example, given the bitmap below as input, your algorithm should return the num-
ber 9, because the largest conected black component (marked with white dots on the
right) contains nine pixels.

9

(b) [4 pts] Design and analyze an algorithm Blacken(i, j) that colors the pixel B[i, j] black
and returns the size of the largest black component in the bitmap. For full credit, the
amortized running time of your algorithm (starting with an all-white bitmap) must be
as small as possible.
For example, at each step in the sequence below, we blacken the pixel marked with an X.
The largest black component is marked with white dots; the number underneath shows
the correct output of the Blacken algorithm.

9 14 14 16 17

(c) [2 pts] What is the worst-case running time of your Blacken algorithm?

3

