Prove that the following languages are undecidable using Rice's Theorem:

Rice's Theorem. Let \mathscr{X} be any nonempty proper subset of the set of acceptable languages. The language $\operatorname{AcceptIn} \mathscr{X}:=\{\langle M\rangle \mid \operatorname{Accept}(M) \in \mathscr{X}\}$ is undecidable.

1. AcceptRegular $:=\{\langle M\rangle \mid \operatorname{Accept}(M)$ is regular $\}$
2. AcceptIlLini $:=\{\langle M\rangle \mid M$ accepts the string ILLINI $\}$
3. AcceptPalindrome $:=\{\langle M\rangle \mid M$ accepts at least one palindrome $\}$
4. AcceptThree $:=\{\langle M\rangle \mid M$ accepts exactly three strings $\}$
5. AcceptUndecidable $:=\{\langle M\rangle \mid \operatorname{Accept}(M)$ is undecidable $\}$

To think about later. Which of the following languages are undecidable? How do you prove it?

1. $\operatorname{Accept}\{\{\varepsilon\}\}:=\{\langle M\rangle \mid M$ only accepts the string ε, i.e. $\operatorname{Accept}(M)=\{\varepsilon\}\}$
2. $\operatorname{Accept}\{\varnothing\}:=\{\langle M\rangle \mid M$ does not accept any strings, i.e. $\operatorname{Accept}(M)=\varnothing\}$
3. Ассерт $\varnothing:=\{\langle M\rangle \mid \operatorname{Accept}(M)$ is not an acceptable language $\}$
4. $\operatorname{Accept}=\operatorname{Reject}:=\{\langle M\rangle \mid \operatorname{Accept}(M)=\operatorname{Reject}(M)\}$
5. $\operatorname{Accept} \neq$ Reject $:=\{\langle M\rangle \mid \operatorname{Accept}(M) \neq \operatorname{Reject}(M)\}$
6. $\operatorname{Accept} \cup R e j e c t:=\left\{\langle M\rangle \mid \operatorname{Accept}(M) \cup \operatorname{ReJect}(M)=\Sigma^{*}\right\}$
