Prove that the following languages are undecidable using Rice's Theorem:

Rice's Theorem. Let \mathscr{X} be any nonempty proper subset of the set of acceptable languages. The language $ACCEPTIN\mathscr{X} := \{ \langle M \rangle \mid ACCEPT(M) \in \mathscr{X} \}$ is undecidable.

- 1. ACCEPTREGULAR := $\{\langle M \rangle \mid ACCEPT(M) \text{ is regular}\}$
- 2. ACCEPTILLINI := $\{\langle M \rangle \mid M \text{ accepts the string ILLINI}\}$
- 3. ACCEPTPALINDROME := $\{\langle M \rangle \mid M \text{ accepts at least one palindrome}\}$
- 4. ACCEPTTHREE := $\{\langle M \rangle \mid M \text{ accepts exactly three strings}\}$
- 5. ACCEPTUNDECIDABLE := $\{\langle M \rangle \mid ACCEPT(M) \text{ is undecidable }\}$

To think about later. Which of the following languages are undecidable? How do you prove it?

- 1. ACCEPT{ $\{\varepsilon\}$ } := { $\langle M \rangle \mid M$ only accepts the string ε , i.e. ACCEPT $(M) = \{\varepsilon\}$ }
- 2. ACCEPT{ \emptyset } := { $\langle M \rangle \mid M$ does not accept any strings, i.e. ACCEPT $(M) = \emptyset$ }
- 3. ACCEPT $\emptyset := \{ \langle M \rangle \mid ACCEPT(M) \text{ is not an acceptable language} \}$
- 4. ACCEPT=REJECT := $\{\langle M \rangle \mid ACCEPT(M) = REJECT(M)\}$
- 5. ACCEPT \neq REJECT := { $\langle M \rangle$ | ACCEPT(M) \neq REJECT(M) }
- 6. ACCEPTUREJECT := $\{\langle M \rangle \mid ACCEPT(M) \cup REJECT(M) = \Sigma^* \}$