
“CS 374” Lab 23 — November 21 Fall 2014

Proving that a problem X is NP-hard requires several steps:

• Choose a problem Y that you already know is NP-hard.

• Describe an algorithm to solve Y , using an algorithm for X as a subroutine. Typically this algorithm
has the following form: Given an instance of Y , transform it into an instance of X , and then call
the magic black-box algorithm for X .

• Prove that your algorithm is correct. This almost always requires two separate steps:

– Prove that your algorithm transforms “good” instances of Y into “good” instances of X .

– Prove that your algorithm transforms “bad” instances of Y into “bad” instances of X . Equiva-
lently: Prove that if your transformation produces a “good” instance of X , then it was given a
“good” instance of Y .

• Argue that your algorithm for Y runs in polynomial time.

Recall that a Hamiltonian cycle in a graph G is a cycle that visits every vertex of G exactly once.

1. In class on Thursday, Jeff proved that it is NP-hard to determine whether a given directed graph
contains a Hamiltonian cycle. Prove that it is NP-hard to determine whether a given undirected
graph contains a Hamiltonian cycle.

2. A double Hamiltonian circuit in a graph G is a closed walk that goes through every vertex in G
exactly twice. Prove that it is NP-hard to determine whether a given undirected graph contains a
double Hamiltonian circuit.

1


