Describe algorithms for the following problems. The input for each problem is string $\langle M, w \rangle$ that encodes a standard (one-tape, one-track, one-head) Turing machine M whose tape alphabet is $\{0, 1, \square\}$ and a string $w \in \{0, 1\}^*$.

- 1. Does *M* accept *w* after at most $|w|^2$ steps?
- 2. If we run *M* with input *w*, does *M* ever move its head to the right?
- $2^{1/2}$. If we run *M* with input *w*, does *M* ever move its head to the right twice in a row?
- 2³/₄. If we run *M* with input *w*, does *M* move its head to the right more than $2^{|w|}$ times?
- 3. If we run *M* with input *w*, does *M* ever change a symbol on the tape?
- 3¹/₂. If we run *M* with input *w*, does *M* ever change a \Box on the tape to either Θ or 1?
 - 4. If we run *M* with input *w*, does *M* ever leave its start state?

In contrast, as we will see later, the following problems are all undecidable!

- 1. Does *M* accept *w*?
- 1½. If we run *M* with input *w*, does *M* ever halt?
 - 2. If we run *M* with input *w*, does *M* ever move its head to the right three times in a row?
 - 3. If we run *M* with input *w*, does *M* ever change a \Box on the tape to 1?
- $3^{\frac{1}{2}}$. If we run *M* with input *w*, does *M* ever change either 0 or 1 on the tape to \square ?
 - 4. If we run *M* with input *w*, does *M* ever reenter its start state?