Describe algorithms for the following problems. The input for each problem is string $\langle M, w\rangle$ that encodes a standard (one-tape, one-track, one-head) Turing machine $M$ whose tape alphabet is $\{0,1, \square\}$ and a string $w \in\{0,1\}^{*}$.

1. Does $M$ accept $w$ after at most $|w|^{2}$ steps?
2. If we run $M$ with input $w$, does $M$ ever move its head to the right?
$2^{112}$. If we run $M$ with input $w$, does $M$ ever move its head to the right twice in a row?
$2^{3 / 4}$. If we run $M$ with input $w$, does $M$ move its head to the right more than $2^{|w|}$ times?
3. If we run $M$ with input $w$, does $M$ ever change a symbol on the tape?
$3^{1 / 2}$. If we run $M$ with input $w$, does $M$ ever change a $\square$ on the tape to either 0 or 1 ?
4. If we run $M$ with input $w$, does $M$ ever leave its start state?

In contrast, as we will see later, the following problems are all undecidable!

1. Does $M$ accept $w$ ?
$1^{1 ⁄ 2}$. If we run $M$ with input $w$, does $M$ ever halt?
2. If we run $M$ with input $w$, does $M$ ever move its head to the right three times in a row?
3. If we run $M$ with input $w$, does $M$ ever change a $\square$ on the tape to 1 ?
$3^{1 / 2}$. If we run $M$ with input $w$, does $M$ ever change either 0 or 1 on the tape to $\square$ ?
4. If we run $M$ with input $w$, does $M$ ever reenter its start state?
