Describe Turing machines that compute the following functions.
In particular, specify the transition functions $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{-1,+1\}$ for each machine either by writing out a table or by drawing a graph. Recall that $\delta(p, \$)=(q, @,+1)$ means that if the Turing machine is in state p and reads the symbol $\$$ from the tape, then it will change to state q, write the symbol @ to the tape, and move one step to the right. In a drawing of a Turing machine, this transition is indicated by an edge from p to q with the label " $\$ / \Omega,+1$ ".

Give your states short mnemonic names that suggest their purpose. Naming your states well won't just make it easier to understand; it will also make it easier to design.

1. Double: Given a string $w \in\{0,1\}^{*}$ as input, return the string $w w$ as output.
2. Power: Given a string of the form 1^{n} as input, return the string $1^{2^{n}}$ as output.
