
“CS 374” Lab 13 — October 15 Fall 2014

Recall the class scheduling problem described in lecture on Tuesday. We are given two arrays S[1 .. n]
and F[1 .. n], where S[i]< F[i] for each i, representing the start and finish times of n classes. Your goal
is to find the largest number of classes you can take without ever taking two classes simultaneously. We
showed in class that the following greedy algorithm constructs an optimal schedule:

Choose the course that ends first, discard all conflicting classes, and recurse.

But this is not the only greedy strategy we could have tried. For each of the following alternative
greedy algorithms, either prove that the algorithm always constructs an optimal schedule, or describe a
small input example for which the algorithm does not produce an optimal schedule. Assume that all
algorithms break ties arbitrarily (that is, in a manner that is completely out of your control).
[Hint: Exactly three of these greedy strategies actually work.]

1. Choose the course x that ends last, discard classes that conflict with x , and recurse.

2. Choose the course x that starts first, discard all classes that conflict with x , and recurse.

3. Choose the course x that starts last, discard all classes that conflict with x , and recurse.

4. Choose the course x with shortest duration, discard all classes that conflict with x , and recurse.

5. Choose a course x that conflicts with the fewest other courses, discard all classes that conflict with x ,
and recurse.

6. If no classes conflict, choose them all. Otherwise, discard the course with longest duration and
recurse.

7. If no classes conflict, choose them all. Otherwise, discard a course that conflicts with the most other
courses and recurse.

8. Let x be the class with the earliest start time, and let y be the class with the second earliest start
time.

• If x and y are disjoint, choose x and recurse on everything but x .
• If x completely contains y , discard x and recurse.
• Otherwise, discard y and recurse.

9. If any course x completely contains another course, discard x and recurse. Otherwise, choose the
course y that ends last, discard all classes that conflict with y , and recurse.

1


