Here are several problems that are easy to solve in $O(n)$ time, essentially by brute force. Your task is to design algorithms for these problems that are significantly faster, and prove that your algorithm is correct.

1. (a) Suppose $A[1 \ldots n]$ is an array of n distinct integers, sorted so that $A[1]<A[2]<\cdots<A[n]$. Each integer $A[i]$ could be positive, negative, or zero. Describe a fast algorithm that either computes an index i such that $A[i]=i$ or correctly reports that no such index exists..
(b) Now suppose $A[1 . . n]$ is a sorted array of n distinct positive integers. Describe an even faster algorithm that either computes an index i such that $A[i]=i$ or correctly reports that no such index exists. [Hint: This is really easy.]
2. Suppose we are given an array $A[1 . . n]$ such that $A[1] \geq A[2]$ and $A[n-1] \leq A[n]$. We say that an element $A[x]$ is a local minimum if both $A[x-1] \geq A[x]$ and $A[x] \leq A[x+1]$. For example, there are exactly six local minima in the following array:

Describe and analyze a fast algorithm that returns the index of one local minimum. For example, given the array above, your algorithm could return the integer 5, because $A[5]$ is a local minimum. [Hint: With the given boundary conditions, any array must contain at least one local minimum. Why?]
3. (a) Suppose you are given two sorted arrays $A[1 . . n]$ and $B[1 . . n]$ containing distinct integers. Describe a fast algorithm to find the median (meaning the nth smallest element) of the union $A \cup B$. For example, given the input

$$
A[1 . .8]=[0,1,6,9,12,13,18,20] \quad B[1 . .8]=[2,4,5,8,17,19,21,23]
$$

your algorithm should return the integer 9. [Hint: What can you learn by comparing one element of A with one element of B ?]
(b) To think about on your own: Now suppose you are given two sorted arrays $A[1 . . m]$ and $B[1 . . n]$ and an integer k. Describe a fast algorithm to find the k th smallest element in the union $A \cup B$. For example, given the input

$$
A[1 . .8]=[0,1,6,9,12,13,18,20] \quad B[1 . .5]=[2,5,7,17,19] \quad k=6
$$

your algorithm should return the integer 7.

