
“CS 374” Lab 1 — August 27 Fall 2014

These lab problems ask you to prove some simple claims about recursively-defined string functions
and concatenation. In each case, we want a self-contained proof by induction that relies on the formal
recursive definitions, not on intuition. In particular, your proofs must refer to the formal recursive
definition of string concatenation:

w • z :=

(

z if w = ε
a · (x • z) if w = ax for some symbol a and some string x

You may also use any of the following facts, which we proved in class:

Lemma 1: Concatenating nothing does nothing: For every string w, we have w • ε = w.

Lemma 2: Concatenation adds length: |w • x |= |w|+ |x | for all strings w and x .

Lemma 3: Concatenation is associative: (w • x) • y = w • (x • y) for all strings w, x , and y .

1. Let #(a, w) denote the number of times symbol a appears in string w; for example,

#(0,000010101010010100) = 12 and #(1,000010101010010100) = 6.

(a) Give a formal recursive definition of #(a, w).

(b) Prove by induction that #(a, w • z) = #(a, w) +#(a, z) for any symbol a and any strings w
and z.

2. The reversal wR of a string w is defined recursively as follows:

wR :=

(

ε if w = ε

xR • a if w = a · x

(a) Prove that (w • x)R = xR • wR for all strings w and x .

(b) Prove that (wR)R = w for every string w.

1

