These lab problems ask you to prove some simple claims about recursively-defined string functions and concatenation. In each case, we want a self-contained proof by induction that relies on the formal recursive definitions, not on intuition. In particular, your proofs must refer to the formal recursive definition of string concatenation:

$$
w \cdot z:= \begin{cases}z & \text { if } w=\varepsilon \\ a \cdot(x \cdot z) & \text { if } w=a x \text { for some symbol } a \text { and some string } x\end{cases}
$$

You may also use any of the following facts, which we proved in class:
Lemma 1: Concatenating nothing does nothing: For every string w, we have $w \bullet \varepsilon=w$.
Lemma 2: Concatenation adds length: $|w \bullet x|=|w|+|x|$ for all strings w and x.
Lemma 3: Concatenation is associative: $(w \cdot x) \bullet y=w \bullet(x \bullet y)$ for all strings w, x, and y.

1. Let $\#(a, w)$ denote the number of times symbol a appears in string w; for example,

$$
\#(0,000010101010010100)=12 \quad \text { and } \quad \#(1,000010101010010100)=6
$$

(a) Give a formal recursive definition of $\#(a, w)$.
(b) Prove by induction that $\#(a, w \cdot z)=\#(a, w)+\#(a, z)$ for any symbol a and any strings w and z.
2. The reversal w^{R} of a string w is defined recursively as follows:

$$
w^{R}:= \begin{cases}\varepsilon & \text { if } w=\varepsilon \\ x^{R} \cdot a & \text { if } w=a \cdot x\end{cases}
$$

(a) Prove that $(w \cdot x)^{R}=x^{R} \bullet w^{R}$ for all strings w and x.
(b) Prove that $\left(w^{R}\right)^{R}=w$ for every string w.

