Due Tuesday, December 9, 2014 at noon

1. Recall that w^R denotes the reversal of string *w*; for example, $TURING^R = GNIRUT$. Prove that the following language is undecidable.

 $\mathsf{RevAccept} := \left\{ \langle M \rangle \mid M \text{ accepts } \langle M \rangle^R \right\}$

- 2. Let *M* be a Turing machine, let *w* be an arbitrary input string, and let *s* be an integer. We say that *M* accepts *w* in space *s* if, given *w* as input, *M* accesses only the first *s* cells on the tape and eventually accepts.
 - (a) Prove that the following language is decidable:

 $\{\langle M, w \rangle \mid M \text{ accepts } w \text{ in space } |w|^2\}$

(b) Prove that the following language is undecidable:

 $\{\langle M \rangle \mid M \text{ accepts at least one string } w \text{ in space } |w|^2\}$

- 3. *[Extra credit]* For each of the following languages, either prove that the language is decidable, or prove that the language is undecidable.
 - (a) $L_0 = \{ \langle M \rangle \mid \text{given any input string, } M \text{ eventually leaves its start state} \}$
 - (b) $L_1 = \{ \langle M \rangle \mid M \text{ decides } L_0 \}$
 - (c) $L_2 = \{ \langle M \rangle \mid M \text{ decides } L_1 \}$
 - (d) $L_3 = \{ \langle M \rangle \mid M \text{ decides } L_2 \}$
 - (e) $L_4 = \{ \langle M \rangle \mid M \text{ decides } L_3 \}$

Name:			Net	ID:	
- (uiii)			1.00		
Name			Not	٠U٠	
Ivallic.			INCL	.ID.	
Nama			Not	י חו	
Ivallie.			INCL	.ID.	
	Section	1		0	
	Section.	T	Z	3	

Prove that RevAccept := $\{\langle M \rangle \mid M \text{ accepts } \langle M \rangle^R\}$ is undecidable.

Name:			Net	ID:	
Name:			Net	ID:	
Name:			Net	ID:	
	Section:	1	2	3	

(a) Prove that $\{\langle M, w \rangle \mid M \text{ accepts } w \text{ in space } |w|^2\}$ is decidable.

(b) Prove that $\{\langle M \rangle \mid M \text{ accepts at least one string } w \text{ in space } |w|^2\}$ is undecidable:

Name:			Net	ID:	
Name:			Net	ID:	
Name:			Net	ID:	
	Section:	1	2	3	

For each of the following languages, either prove that the language is decidable, or prove that the language is undecidable.

- (a) $L_0 = \{ \langle M \rangle \mid \text{given any input string, } M \text{ eventually leaves its start state} \}$
- (b) $L_1 = \{ \langle M \rangle \mid M \text{ decides } L_0 \}$
- (c) $L_2 = \{ \langle M \rangle \mid M \text{ decides } L_1 \}$
- (d) $L_3 = \{ \langle M \rangle \mid M \text{ decides } L_2 \}$
- (e) $L_4 = \{ \langle M \rangle \mid M \text{ decides } L_3 \}$