## "CS 374" Fall 2014 - Homework 10 <br> Due Tuesday, December 2, 2014 at noon

1. Consider the following problem, called BoxDepth: Given a set of $n$ axis-aligned rectangles in the plane, how big is the largest subset of these rectangles that contain a common point?
(a) Describe a polynomial-time reduction from BoxDepth to MaxClique.
(b) Describe and analyze a polynomial-time algorithm for BoxDeptr. [Hint: Don't try to optimize the running time; $O\left(n^{3}\right)$ is good enough.]
(c) Why don't these two results imply that $\mathrm{P}=\mathrm{NP}$ ?
2. Consider the following solitaire game. The puzzle consists of an $n \times m$ grid of squares, where each square may be empty, occupied by a red stone, or occupied by a blue stone. The goal of the puzzle is to remove some of the given stones so that the remaining stones satisfy two conditions: (1) every row contains at least one stone, and (2) no column contains stones of both colors. For some initial configurations of stones, reaching this goal is impossible.


A solvable puzzle and one of its many solutions.


An unsolvable puzzle.

Prove that it is NP-hard to determine, given an initial configuration of red and blue stones, whether this puzzle can be solved.
3. A subset $S$ of vertices in an undirected graph $G$ is called triangle-free if, for every triple of vertices $u, v, w \in S$, at least one of the three edges $u v, u w, v w$ is absent from $G$. Prove that finding the size of the largest triangle-free subset of vertices in a given undirected graph is NP-hard.


A triangle-free subset of 7 vertices.
This is not the largest triangle-free subset in this graph.
In addition to submitting paper solutions, please also electronically submit your solution to this problem on CrowdGrader.
4. [Extra credit] Describe a direct polynomial-time reduction from 4Color to 3Color. (This is significantly harder than the opposite direction, which you'll see in lab on Wednesday. Don't go through the Cook-Levin Theorem.)

## CS 374 Fall 2014 - Homework 10 Problem 1

| Name: |  | NetID: |  |
| :--- | :--- | :--- | :--- |
| Name: |  |  | NetID: |
| Name: |  |  | NetID: |
|  | Section: | 1 | 2 |

(a) Describe a polynomial-time reduction from BoxDepth to MAXClique.
(b) Describe and analyze a polynomial-time algorithm for BoxDepth. [Hint: Don't try to optimize the running time; $O\left(n^{3}\right)$ is good enough.]
(c) Why don't these two results imply that $\mathrm{P}=\mathrm{NP}$ ?

CS 374 Fall 2014 - Homework 10 Problem 2

| Name: |  | NetID: |  |
| :--- | :--- | :--- | :--- |
| Name: |  |  | NetID: |
| Name: |  |  | NetID: |
|  | Section: | 1 | 2 |

Prove that it is NP-hard to determine, given an initial configuration of red and blue stones, whether the puzzle can be solved.

CS 374 Fall 2014 - Homework 10 Problem 3

| Name: |  | NetID: |
| :--- | :--- | :--- |
| Name: |  | NetID: |
| Name: |  | NetID: |
|  | Section: | 1 |

Prove that finding the size of the largest triangle-free subset of vertices in a given undirected graph is NP-hard.

## CS 374 Fall 2014 - Homework 10 Problem 4 [Extra Credit]

| Name: |  | NetID: |  |
| :--- | :--- | :--- | :--- |
| Name: |  |  | NetID: |
| Name: |  | NetID: |  |
|  | Section: | 1 | 2 |

Describe a direct polynomial-time reduction from 4Color to 3Color.

