
CS 473 Homework 5 (due October 15, 2013) Fall 2013

1. Recall that a standard (FIFO) queue maintains a sequence of items subject to the following
operations.

• PUSH(x): Add item x to the end of the sequence.

• PULL(): Remove and return the item at the beginning of the sequence.

• SIZE(): Return the current number of items in the sequence.

It is easy to implement a queue using a doubly-linked list, so that it uses O(n) space (where n is
the number of items in the queue) and the worst-case time for each of these operations is O(1).

Consider the following new operation, which removes every tenth element from the queue,
starting at the beginning, in ⇥(n) worst-case time.

DECIMATE():
n SIZE()
for i 0 to n� 1

if i mod 10= 0
PULL() hhresult discardedii

else
PUSH(PULL())

Prove that in any intermixed sequence of PUSH, PULL, and DECIMATE operations, the amortized
cost of each operation is O(1).

2. This problem is extra credit, because the original problem statement had several confusing small
errors. I believe these erors are corrected in the current revision.

Deleting an item from an open-addressed hash table is not as straightforward as deleting from
a chained hash table. The obvious method for deleting an item x simply empties the entry in the
hash table that contains x . Unfortunately, the obvious method doesn’t always work. (Part (a) of
this question asks you to prove this.)

Knuth proposed the following lazy deletion strategy. Every cell in the table stores both an item
and a label; the possible labels are EMPTY, FULL, and JUNK. The DELETE operation marks cells as JUNK
instead of actually erasing their contents. Then FIND pretends that JUNK cells are occupied, and
INSERT pretends that JUNK cells are actually empty. In more detail:

FIND(H, x):
for i 0 to m� 1

j hi(x)
if H.label[j] = FULL and H.item[j] = x

return j
else if H.label[j] = EMPTY

return NONE

INSERT(H, x):
for i 0 to m� 1

j hi(x)
if H.label[j] = FULL and H.item[j] = x

return hhalready thereii
if H.label[j] 6= FULL

H.item[j] x
H.label[j] FULL
return

DELETE(H, x):
j FIND(H, x)
if j 6= NONE

H.label[j] JUNK

1

CS 473 Homework 5 (due October 15, 2013) Fall 2013

Lazy deletion is always correct, but it is only efficient if we don’t perform too many deletions.
The search time depends on the fraction of non-EMPTY cells, not on the number of actual items
stored in the table; thus, even if the number of items stays small, the table may fill up with JUNK
cells, causing unsuccessful searches to scan the entire table. Less significantly, the data structure
may use significantly more space than necessary for the number of items it actually stores. To
avoid both of these issues, we use the following rebuilding rules:

• After each INSERT operation, if less than 1/4 of the cells are EMPTY, rebuild the hash table.

• After each DELETE operation, if less than 1/4 of the cells are FULL, rebuild the hash table.

To rebuild the hash table, we allocate a new hash table whose size is twice the number of FULL
cells (unless that number is smaller than some fixed constant), INSERT each item in a FULL cell in
the old hash table into the new hash table, and then discard the old hash table, as follows:

REBUILD(H):
count 0
for j 0 to H.size� 1

if H.label[j] = FULL
count count+ 1

H 0 new hash table of size max{2 · count, 32}
for j 0 to H.size� 1

if H.label[j] = FULL
INSERT(H 0, H.item[j])

discard H
return H 0

Finally, here are your actual homework questions!

(a) Describe a small example where the “obvious” deletion algorithm is incorrect; that is, show
that the hash table can reach a state where a search can return the wrong result. Assume
collisions are resolved by linear probing.

(b) Suppose we use Knuth’s lazy deletion strategy instead. Prove that after several INSERT and
DELETE operations into a table of arbitrary size m, it is possible for a single item x to be stored
in almost half of the table cells. (However, at most one of those cells can be labeled FULL.)

(c) For purposes of analysis,1suppose FIND and INSERT run in O(1) time when at least 1/4 of the
table cells are EMPTY. Prove that in any intermixed sequence of INSERT and DELETE operations,
using Knuth’s lazy deletion strategy, the amortized time per operation is O(1).

?3. Extra credit. Submit your answer to Homework 4 problem 3.

1In fact, FIND and INSERT run in O(1) expected time when at least 1/4 of the table cells are EMPTY, and therefore each INSERT

and DELETE takes O(1) expected amortized time. But probability doesn’t play any role whatsoever in the amortized analysis, so
we can safely ignore the word “expected”.

2

