CS 473 Homework 1 (due September 10, 2012) Fall 2013

Starting with this homework, groups of up to three students may submit a single solution for
each numbered problem. Every student in the group receives the same grade.
Groups can be different for different problems.

1. Consider the following cruel and unusual sorting algorithm.

CrUEL(A[1..n]):

ifn>1
CrutL(A[1..n/2])
CrutL(A[n/24+1..n])
UnusuaL(A[1..n])

UnusuaL(A[1..n]):
ifn=2
ifA[1] > A[2] {(the only comparison!))
swap A[1] «— A[2]
else
fori —1ton/4 {(swap 2nd and 3rd quarters))
swap A[i +n/4] « Ali + n/2]
UnusuaL(A[1..n/2]) {(recurse on left half))
UnusuaL(A[n/2+1..n]) {(recurse on right half))
UNusuAL(A[n/4+1..3n/4]) {(recurse on middle half))

Notice that the comparisons performed by the algorithm do not depend at all on the values in the
input array; such a sorting algorithm is called oblivious. Assume for this problem that the input
size n is always a power of 2.

(a) Prove that CRUEL correctly sorts any input array. [Hint: Consider an array that contains
n/4 1s,n/4 2s, n/4 3s, and n/4 4s. Why is considering this special case enough? What does
UNUSUAL actually do?]

(b) Prove that CRUEL would not always sort correctly if we removed the for-loop from UNUSUAL.
(c) Prove that CrUEL would not always sort correctly if we swapped the last two lines of UNUSUAL.
(d) What is the running time of UnusuaL? Justify your answer.

(e) What is the running time of CRUEL? Justify your answetr.

2. For this problem, a subtree of a binary tree means any connected subgraph. A binary tree is
complete if every internal node has two children, and every leaf has exactly the same depth.
Describe and analyze a recursive algorithm to compute the largest complete subtree of a given
binary tree. Your algorithm should return the root and the depth of this subtree.

The largest complete subtree of this binary tree has depth 2.



CS 473 Homework 1 (due September 10, 2012) Fall 2013

3. (a) Suppose we are given two sorted arrays A[1..n] and B[1..n]. Describe an algorithm to find
the median of the union of A and B in O(logn) time. Assume the arrays contain no duplicate
elements.

(b) Now suppose we are given three sorted arrays A[1..n], B[1..n], and C[1..n]. Describe an
algorithm to find the median element of AUB U C in O(logn) time.

*4. Extra credit; due September 17. (The “I don’t know” rule does not apply to extra credit problems.)

Bob Ratenbur, a new student in CS 225, is trying to write code to perform preorder, inorder,
and postorder traversal of binary trees. Bob understands the basic idea behind the traversal
algorithms, but whenever he tries to implement them, he keeps mixing up the recursive calls. Five
minutes before the deadline, Bob submitted code with the following structure:

PREORDER(V): INORDER(V): PoSTORDER(V):
if v =NuLL if v =NuLL if v =NuLL
return return return
else else else
print label(v) IORDER(left(v)) IORDER(left(v))
IEORDER(left(v)) print label(v) IORDER(right(v))
IORDER(right(v)) IORDER(right(v)) print label(v)

Each [l represents either PRrE, IN, or PosT. Moreover, each of the following function calls appears
exactly once in Bob’s submitted code:

PREORDER(left(v))
PREORDER(right(v))

INORDER(left(v)) PosTORDER(left(v))
INORDER(right(v)) PoSTORDER(right(v))

Thus, there are exactly 36 possibilities for Bob’s code. Unfortunately, Bob accidentally deleted his
source code after submitting the executable, so neither you nor he knows which functions were
called where.

Your task is to reconstruct a binary tree T from the output of Bob’s traversal algorithms, which
has been helpfully parsed into three arrays Pre[1..n], In[1..n], and Post[1..n]. Your algorithm
should return the unknown tree T. You may assume that the vertex labels of the unknown tree
are distinct, and that every internal node has exactly two children. For example, given the input

Pre[1.n]=[HAECBTIFGD]
In[1.n]=[AHDCETIFBG]
Post[1..n]=[AEIBF CD G H]

your algorithm should return the following tree:




CS 473

Homework 1 (due September 10, 2012)

In general, the traversal sequences may not give you enough information to reconstruct Bob’s

code; however, to produce the example sequences above, Bob’s code must look like this:

PREORDER(V):
if v =NuLL
return
else
print label(v)
PrREORDER(left(v))
PosTORDER(right(v))

INORDER(V):
if v =NuULL
return
else
PosTORDER(left(v))
print label(v)
PREORDER(right(v))

POSTORDER(V):
if v=NuLL
return
else
INORDER(left(v))
INORDER(right(v))
print label(v)

Fall 2013




