This exam lasts 180 minutes. Write your answers in the separate answer booklet.

Please return this question sheet and your cheat sheets with your answers.

- 1. Clearly indicate the following structures in the weighted graph pictured below. Some of these subproblems have more than one correct answer.
 - (a) A depth-first spanning tree rooted at *s*
 - (b) A breadth-first spanning tree rooted at s
 - (c) A shortest-path tree rooted at *s*
 - (d) A minimum spanning tree
 - (e) A minimum (s, t)-cut

2. A multistack consists of an infinite series of stacks S_0, S_1, S_2, \ldots , where the *i*th stack S_i can hold up to 3^i elements. Whenever a user attempts to push an element onto any full stack S_i , we first pop all the elements off S_i and push them onto stack S_{i+1} to make room. (Thus, if S_{i+1} is already full, we first recursively move all its members to S_{i+2} .) Moving a single element from one stack to the next takes O(1) time.

- (a) In the worst case, how long does it take to push one more element onto a multistack containing *n* elements?
- (b) *Prove* that the amortized cost of a push operation is $O(\log n)$, where *n* is the maximum number of elements in the multistack.
- 3. Describe and analyze an algorithm to determine, given an undirected graph G = (V, E) and three vertices $u, v, w \in V$ as input, whether G contains a simple path from u to w that passes through v. You do **not** need to prove your algorithm is correct.

4. Suppose we are given an *n*-digit integer *X*. Repeatedly remove one digit from either end of *X* (your choice) until no digits are left. The *square-depth* of *X* is the maximum number of perfect squares that you can see during this process. For example, the number 32492 has square-depth 3, by the following sequence of removals:

Describe and analyze an algorithm to compute the square-depth of a given integer X, represented as an array X[1..n] of n decimal digits. Assume you have access to a subroutine IsSQUARE that determines whether a given k-digit number (represented by an array of digits) is a perfect square *in* $O(k^2)$ *time*.

- 5. Suppose we are given two *sorted* arrays A[1..n] and B[1..n] containing 2n distinct numbers. Describe and analyze an algorithm that finds the *n*th smallest element in the union $A \cup B$ in $O(\log n)$ time.
- 6. Recall the following problem from Homework 2:
 - 3WAYPARTITION: Given a set *X* of positive integers, determine whether there are three disjoint subsets *A*, *B*, *C* \subseteq *X* such that *A* \cup *B* \cup *C* = *X* and

$$\sum_{a\in A}a=\sum_{b\in B}b=\sum_{c\in C}c.$$

- (a) **Prove** that 3WAYPARTITION is NP-hard. [Hint: Don't try to reduce from 3SAT or 3COLOR; in this rare instance, the 3 is just a coincidence.]
- (b) In Homework 2, you described an algorithm to solve $3W_{AYPARTITION}$ in $O(nS^2)$ time, where *S* is the sum of all elements of *X*. Why doesn't this algorithm imply that P=NP?
- 7. Describe and analyze efficient algorithms to solve the following problems:
 - (a) Given an array of *n* integers, does it contain two elements *a*, *b* such that a + b = 0?
 - (b) Given an array of *n* integers, does it contain three elements *a*, *b*, *c* such that a + b + c = 0?