1. Any connected graph with n nodes and n edges has exactly one cycle.
2. Any n-node binary tree can be transformed into any other n-node binary tree by a sequence of at most $2 n-2$ rotations.
3. If d_{1}, \ldots, d_{n} are positive integers such that $\sum_{i=1}^{n} d_{i}=2 n-2$, then there is a tree having d_{1}, \ldots, d_{n} as its vertex degrees. For examples, $\{1,1,1,1,1,5\}$ has sum $2 \cdot 6-2$, and so the hypothesis is satisfied. The tree that is the star with five leaves has vertex degrees $\{1,1,1,1,1,5\}$. Also, $\{1,1,1,1,2,3,3\}$ has sum $2 \cdot 7-2$, and the perfect binary three with depth 2 has vertex degrees $\{1,1,1,1,2,3,3\}$.
