A useful list of NP-hard problems appears on the next page.

The Knapsack problem is the following. We are given a set of n objects, each with a positive integer size and a positive integer value; we are also given a positive integer B. The problem is to choose a subset of the n objects with maximum total value, whose total size is at most B. Let V denote the sum of the values of all objects.

1. Describe an algorithm to solve Knapsack in time polynomial in n and V.
2. Prove that the Knapsack problem is NP-hard.

Given the algorithm from problem 1, why doesn't this immediately imply that $\mathrm{P}=\mathrm{NP}$?
3. Facility location is a family of problems that require choosing a subset of facilities (for example, gas stations, cell towers, garbage dumps, Starbuckses, ...) to serve a given set of locations cheaply. In its most abstract formulation, the input to the facility location problem is a pair of arrays Open [1..n] and Connect[$1 . . n, 1$.. m], where

- Open [$i]$ is the cost of opening a facility i, and
- Connect $[i, j]$ is the cost of connecting facility i to location j.

Given these two arrays, the problem is to compute a subset $I \subseteq\{1,2, \ldots, n\}$ of the n facilities to open and a function $\phi:\{1,2, \ldots, m\} \rightarrow I$ that assigns an open facility to each of the m locations, so that the total cost

$$
\sum_{i \in I} \operatorname{Open}[i]+\sum_{j=1}^{m} \operatorname{Connect}[\phi(j), j]
$$

is minimized. Prove that this problem is NP-hard.

You may assume the following problems are NP-hard:

CircuitSat: Given a boolean circuit, are there any input values that make the circuit output True?
PlanarCircuitSat: Given a boolean circuit drawn in the plane so that no two wires cross, are there any input values that make the circuit output True?

3SAt: Given a boolean formula in conjunctive normal form, with exactly three literals per clause, does the formula have a satisfying assignment?

Max2Sat: Given a boolean formula in conjunctive normal form, with exactly two literals per clause, what is the largest number of clauses that can be satisfied by an assignment?

MaxIndependentSet: Given an undirected graph G, what is the size of the largest subset of vertices in G that have no edges among them?

MaxClique: Given an undirected graph G, what is the size of the largest complete subgraph of G ?
MinVertexCover: Given an undirected graph G, what is the size of the smallest subset of vertices that touch every edge in G ?

MinSetCover: Given a collection of subsets $S_{1}, S_{2}, \ldots, S_{m}$ of a set S, what is the size of the smallest subcollection whose union is S ?

MinHittingSet: Given a collection of subsets $S_{1}, S_{2}, \ldots, S_{m}$ of a set S, what is the size of the smallest subset of S that intersects every subset S_{i} ?

3Color: Given an undirected graph G, can its vertices be colored with three colors, so that every edge touches vertices with two different colors?

MaxCut: Given a graph G, what is the size (number of edges) of the largest bipartite subgraph of G ?
HamiltonianCycle: Given a graph G, is there a cycle in G that visits every vertex exactly once?
HamiltonianPath: Given a graph G, is there a path in G that visits every vertex exactly once?
TravelingSalesman: Given a graph G with weighted edges, what is the minimum total weight of any Hamiltonian path/cycle in G ?

SubsetSum: Given a set X of positive integers and an integer k, does X have a subset whose elements sum to k ?

Partition: Given a set X of positive integers, can X be partitioned into two subsets with the same sum?
3Partition: Given a set X of n positive integers, can X be partitioned into $n / 3$ three-element subsets, all with the same sum?

