
CS 573 Homework 4 (due November 1, 2010) Fall 2010

CS 573: Graduate Algorithms, Fall 2010
Homework 4

Due Monday, November 1, 2010 at 5pm
(in the homework drop boxes in the basement of Siebel)

1. Consider an n-node treap T . As in the lecture notes, we identify nodes in T by the ranks of their
search keys. Thus, ‘node 5’ means the node with the 5th smallest search key. Let i, j, k be integers
such that 1≤ i ≤ j ≤ k ≤ n.

(a) What is the exact probability that node j is a common ancestor of node i and node k?

(b) What is the exact expected length of the unique path from node i to node k in T?

2. Let M[1 .. n, 1 .. n] be an n× n matrix in which every row and every column is sorted. Such an
array is called totally monotone. No two elements of M are equal.

(a) Describe and analyze an algorithm to solve the following problem in O(n) time: Given indices
i, j, i′, j′ as input, compute the number of elements of M smaller than M[i, j] and larger
than M[i′, j′].

(b) Describe and analyze an algorithm to solve the following problem in O(n) time: Given
indices i, j, i′, j′ as input, return an element of M chosen uniformly at random from the
elements smaller than M[i, j] and larger than M[i′, j′]. Assume the requested range is
always non-empty.

(c) Describe and analyze a randomized algorithm to compute the median element of M in
O(n log n) expected time.

3. Suppose we are given a complete undirected graph G, in which each edge is assigned a weight
chosen independently and uniformly at random from the real interval [0, 1]. Consider the following
greedy algorithm to construct a Hamiltonian cycle in G. We start at an arbitrary vertex. While
there is at least one unvisited vertex, we traverse the minimum-weight edge from the current
vertex to an unvisited neighbor. After n− 1 iterations, we have traversed a Hamiltonian path; to
complete the Hamiltonian cycle, we traverse the edge from the last vertex back to the first vertex.
What is the expected weight of the resulting Hamiltonian cycle? [Hint: What is the expected
weight of the first edge? Consider the case n= 3.]
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4. (a) Consider the following deterministic algorithm to construct a vertex cover C of a graph G.

VERTEXCOVER(G):
C ← ;
while C is not a vertex cover

pick an arbitrary edge uv that is not covered by C
add either u or v to C

return C

Prove that VERTEXCOVER can return a vertex cover that is Ω(n) times larger than the smallest
vertex cover. You need to describe both an input graph with n vertices, for any integer n, and
the sequence of edges and endpoints chosen by the algorithm.

(b) Now consider the following randomized variant of the previous algorithm.

RANDOMVERTEXCOVER(G):
C ← ;
while C is not a vertex cover

pick an arbitrary edge uv that is not covered by C
with probability 1/2

add u to C
else

add v to C
return C

Prove that the expected size of the vertex cover returned by RANDOMVERTEXCOVER is at most
2 ·OPT, where OPT is the size of the smallest vertex cover.

(c) Let G be a graph in which each vertex v has a weight w(v). Now consider the following
randomized algorithm that constructs a vertex cover.

RANDOMWEIGHTEDVERTEXCOVER(G):
C ← ;
while C is not a vertex cover

pick an arbitrary edge uv that is not covered by C
with probability w(v)/(w(u) +w(v))

add u to C
else

add v to C
return C

Prove that the expected weight of the vertex cover returned by RANDOMWEIGHTEDVERTEXCOVER

is at most 2 ·OPT, where OPT is the weight of the minimum-weight vertex cover. A correct
answer to this part automatically earns full credit for part (b).
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5. (a) Suppose n balls are thrown uniformly and independently at random into m bins. For any
integer k, what is the exact expected number of bins that contain exactly k balls?

(b) Consider the following balls and bins experiment, where we repeatedly throw a fixed number
of balls randomly into a shrinking set of bins. The experiment starts with n balls and n bins.
In each round i, we throw n balls into the remaining bins, and then discard any non-empty
bins; thus, only bins that are empty at the end of round i survive to round i+ 1.

BALLSDESTROYBINS(n):
start with n empty bins
while any bins remain

throw n balls randomly into the remaining bins
discard all bins that contain at least one ball

Suppose that in every round, precisely the expected number of bins are empty. Prove that
under these conditions, the experiment ends after O(log∗ n) rounds.1

?(c) [Extra credit] Now assume that the balls are really thrown randomly into the bins in each
round. Prove that with high probability, BALLSDESTROYBINS(n) ends after O(log∗ n) rounds.

(d) Now consider a variant of the previous experiment in which we discard balls instead of bins.
Again, the experiment n balls and n bins. In each round i, we throw the remaining balls into
n bins, and then discard any ball that lies in a bin by itself; thus, only balls that collide in
round i survive to round i+ 1.

BINSDESTROYSINGLEBALLS(n):
start with n balls
while any balls remain

throw the remaining balls randomly into n bins
discard every ball that lies in a bin by itself
retrieve the remaining balls from the bins

Suppose that in every round, precisely the expected number of bins contain exactly one ball.
Prove that under these conditions, the experiment ends after O(log log n) rounds.

?(e) [Extra credit] Now assume that the balls are really thrown randomly into the bins in each
round. Prove that with high probability, BINSDESTROYSINGLEBALLS(n) ends after O(log log n)
rounds.

1Recall that the iterated logarithm is defined as follows: log∗ n= 0 if n≤ 1, and log∗ n= 1+ log∗(lg n) otherwise.
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