CS 573: Graduate Algorithms, Fall 2010 Homework 4

Due Monday, November 1, 2010 at 5pm
(in the homework drop boxes in the basement of Siebel)

1. Consider an n-node treap T. As in the lecture notes, we identify nodes in T by the ranks of their search keys. Thus, 'node 5 ' means the node with the 5th smallest search key. Let i, j, k be integers such that $1 \leq i \leq j \leq k \leq n$.
(a) What is the exact probability that node j is a common ancestor of node i and node k ?
(b) What is the exact expected length of the unique path from node i to node k in T ?
2. Let $M[1 . . n, 1 . . n]$ be an $n \times n$ matrix in which every row and every column is sorted. Such an array is called totally monotone. No two elements of M are equal.
(a) Describe and analyze an algorithm to solve the following problem in $O(n)$ time: Given indices $i, j, i^{\prime}, j^{\prime}$ as input, compute the number of elements of M smaller than $M[i, j]$ and larger than $M\left[i^{\prime}, j^{\prime}\right]$.
(b) Describe and analyze an algorithm to solve the following problem in $O(n)$ time: Given indices $i, j, i^{\prime}, j^{\prime}$ as input, return an element of M chosen uniformly at random from the elements smaller than $M[i, j]$ and larger than $M\left[i^{\prime}, j^{\prime}\right]$. Assume the requested range is always non-empty.
(c) Describe and analyze a randomized algorithm to compute the median element of M in $O(n \log n)$ expected time.
3. Suppose we are given a complete undirected graph G, in which each edge is assigned a weight chosen independently and uniformly at random from the real interval [0,1]. Consider the following greedy algorithm to construct a Hamiltonian cycle in G. We start at an arbitrary vertex. While there is at least one unvisited vertex, we traverse the minimum-weight edge from the current vertex to an unvisited neighbor. After $n-1$ iterations, we have traversed a Hamiltonian path; to complete the Hamiltonian cycle, we traverse the edge from the last vertex back to the first vertex. What is the expected weight of the resulting Hamiltonian cycle? [Hint: What is the expected weight of the first edge? Consider the case $n=3$.]
4. (a) Consider the following deterministic algorithm to construct a vertex cover C of a graph G.
```
VErtexCover(G):
    C\leftarrow\emptyset
    while C is not a vertex cover
        pick an arbitrary edge }uv\mathrm{ that is not covered by C
        add either }u\mathrm{ or v to C
    return C
```

Prove that VertexCover can return a vertex cover that is $\Omega(n)$ times larger than the smallest vertex cover. You need to describe both an input graph with n vertices, for any integer n, and the sequence of edges and endpoints chosen by the algorithm.
(b) Now consider the following randomized variant of the previous algorithm.

```
RandomVertexCover( \(G\) ):
    \(C \leftarrow \emptyset\)
    while \(C\) is not a vertex cover
        pick an arbitrary edge \(u v\) that is not covered by \(C\)
        with probability \(1 / 2\)
                add \(u\) to \(C\)
            else
                add \(v\) to \(C\)
    return \(C\)
```

Prove that the expected size of the vertex cover returned by RandomVertexCover is at most $2 \cdot$ OPT, where OPT is the size of the smallest vertex cover.
(c) Let G be a graph in which each vertex v has a weight $w(v)$. Now consider the following randomized algorithm that constructs a vertex cover.

```
RandomWeightedVertexCover( \(G\) ):
    \(C \leftarrow \emptyset\)
    while \(C\) is not a vertex cover
        pick an arbitrary edge \(u v\) that is not covered by \(C\)
        with probability \(w(v) /(w(u)+w(v))\)
        add \(u\) to \(C\)
        else
            add \(v\) to \(C\)
    return \(C\)
```

Prove that the expected weight of the vertex cover returned by RandomWeightedVertexCover is at most $2 \cdot$ OPT, where OPT is the weight of the minimum-weight vertex cover. A correct answer to this part automatically earns full credit for part (b).
5. (a) Suppose n balls are thrown uniformly and independently at random into m bins. For any integer k, what is the exact expected number of bins that contain exactly k balls?
(b) Consider the following balls and bins experiment, where we repeatedly throw a fixed number of balls randomly into a shrinking set of bins. The experiment starts with n balls and n bins. In each round i, we throw n balls into the remaining bins, and then discard any non-empty bins; thus, only bins that are empty at the end of round i survive to round $i+1$.

```
BALLSDESTROYBINS(n):
    start with n empty bins
    while any bins remain
        throw n balls randomly into the remaining bins
        discard all bins that contain at least one ball
```

Suppose that in every round, precisely the expected number of bins are empty. Prove that under these conditions, the experiment ends after $O\left(\log ^{*} n\right)$ rounds. ${ }^{1}$
(c) [Extra credit] Now assume that the balls are really thrown randomly into the bins in each round. Prove that with high probability, BallsDestroyBins(n) ends after $O\left(\log ^{} n\right)$ rounds.
(d) Now consider a variant of the previous experiment in which we discard balls instead of bins. Again, the experiment n balls and n bins. In each round i, we throw the remaining balls into n bins, and then discard any ball that lies in a bin by itself; thus, only balls that collide in round i survive to round $i+1$.

```
BinSDESTROYSINGLEBALLS( }n\mathrm{ ):
    start with n balls
    while any balls remain
        throw the remaining balls randomly into }n\mathrm{ bins
        discard every ball that lies in a bin by itself
        retrieve the remaining balls from the bins
```

Suppose that in every round, precisely the expected number of bins contain exactly one ball. Prove that under these conditions, the experiment ends after $O(\log \log n)$ rounds.
*(e) [Extra credit] Now assume that the balls are really thrown randomly into the bins in each round. Prove that with high probability, BinsDestroySingleBalls(n) ends after $O(\log \log n)$ rounds.

[^0]
[^0]: ${ }^{1}$ Recall that the iterated logarithm is defined as follows: $\log ^{*} n=0$ if $n \leq 1$, and $\log ^{*} n=1+\log { }^{*}(\lg n)$ otherwise.

