
CS 573 Homework 0 (due September 1, 2010) Fall 2010

CS 573: Graduate Algorithms, Fall 2010
Homework 0

Due Wednesday, September 1, 2010 in class

• This homework tests your familiarity with prerequisite material (http://www.cs.uiuc.edu/class/
fa10/cs573/stuff-you-already-know.html) to help you identify gaps in your background knowl-
edge. You are responsible for filling those gaps. Fr most topics, the early chapters of any
algorithms textbook should be sufficient review, but you may also want consult your favorite
discrete mathematics and data structures textbooks. If you need help, please ask in office hours
and/or on the course newsgroup.

• Each student must submit individual solutions for these homework problems. For all future
homeworks, groups of up to three students may submit (or present) a single group solution for
each problem.

• Please carefully read the course policies linked from the course web site. If you have any questions,
please ask during lecture or office hours, or post your question to the course newsgroup. In
particular:

– Submit five separately stapled solutions, one for each numbered problem, with your name
and NetID clearly printed on each page. Please do not staple everything together.

– You may use any source at your disposal—paper, electronic, or human—but you must write
your solutions in your own words, and you must cite every source that you use. In particular,
each solution should include a list of everyone you worked with to solve that problem.

– Unless explicitly stated otherwise, every homework problem requires a proof.

– Answering “I don’t know” to any homework or exam problem (except for extra credit
problems) is worth 25% partial credit.

– Algorithms or proofs containing phrases like “and so on” or “repeat this process for all n”
instead of an explicit loop, recursion, or induction, will receive 0 points.

1

http://www.cs.uiuc.edu/class/fa10/cs573/stuff-you-already-know.html
http://www.cs.uiuc.edu/class/fa10/cs573/stuff-you-already-know.html

CS 573 Homework 0 (due September 1, 2010) Fall 2010

1. (•) Write the sentence “I understand the course policies."
Solutions that omit this sentence will not be graded.

(a) [5 pts] Solve the following recurrences. State tight asymptotic bounds for each function in
the form Θ(f (n)) for some recognizable function f (n). Assume reasonable but nontrivial
base cases if none are given. Do not submit proofs—just a list of five functions—but you
should do them anyway, just for practice.

• A(n) = 4 A(n− 1) + 1

• B(n) = B(n− 3) + n2

• C(n) = 2 C(n/2) + 3 C(n/3) + n2

• D(n) = 2 D(n/3) +
p

n

• E(n) =







n if n≤ 3,

E(n− 1)E(n− 2)
E(n− 3)

otherwise
[Hint: This is easier than it looks!]

(b) [5 pts] Sort the following functions from asymptotically smallest to asymptotically largest,
indicating ties if there are any. Do not submit proofs—just a sorted list of 16 functions—but
you should do them anyway, just for practice.

Write f (n) � g(n) to indicate that f (n) = o(g(n)), and write f (n) ≡ g(n) to mean
f (n) = Θ(g(n)). We use the notation lg n= log2 n.

n lg n
p

n 7n

p

lg n lg
p

n 7
p

n p
7n

7lg n lg(7n) 7lg
p

n 7
p

lg n

p

7lg n lg(7
p

n) lg
p

7n
p

lg(7n)

2. Professore Giorgio della Giungla has a 23-node binary tree, in which every node is labeled with a
unique letter of the Roman alphabet, which is just like the modern English alphabet, but without
the letters J, U, and W. Inorder and postorder traversals of the tree visit the nodes in the following
order:

• Inorder: S V Z A T P R D B X O L F E H I Q M N G Y K C

• Postorder: A Z P T X B D L E F O H R I V N M K C Y G Q S

(a) List the nodes in Prof. della Giungla’s tree in the order visited by a preorder traversal.

(b) Draw Prof. della Giungla’s tree.

2

CS 573 Homework 0 (due September 1, 2010) Fall 2010

3. The original version of this problem asked to support the mirror-image operations LOWESTTORIGHT

and LEFTMOSTABOVE, which are much harder to support with a single data structure that stores

each point at most once. We will accept O(n)-space data structures for either version of the

problem for full credit.

Describe a data structure that stores a set S of n points in the plane, each represented by a pair
(x , y) of coordinates, and supports the following queries.

• HIGHESTTORIGHT(`): Return the highest point in S whose x-coordinate is greater than or
equal to `. If every point in S has x-coordinate less than `, return NONE.

• RIGHTMOSTABOVE(`): Return the rightmost point in S whose y-coordinate is greater than or
equal to `. If every point in S has y-coordinate less than `, return NONE.

For example, if S = {(3,1), (1,9), (9, 2), (6,3), (5, 8), (7, 5), (10,4), (0, 7)}, then both HIGHEST-
TORIGHT(4) and RIGHTMOSTABOVE(6) should return the point (5,8), and HIGHESTTORIGHT(15)
should return NONE.

HIGHESTTORIGHT(4) = RIGHTMOSTABOVE(6) = (5,8)

Analyze both the size of your data structure and the running times of your query algorithms.
For full credit, your data structure should use O(n) space, and each query algorithm should
run in O(log n) time. For 5 extra credit points, describe a data structure that stores each
point at most once. You may assume that no two points in S have equal x-coordinates or equal
y-coordinates.

[Hint: Modify one of the standard data structures listed at http://www.cs.uiuc.edu/class/fa10/
cs573/stuff-you-already-know.html, but just describe your changes; don’t regurgitate the details
of the standard data structure.]

4. An arithmetic expression tree is a binary tree where every leaf is labeled with a variable, every
internal node is labeled with an arithmetic operation, and every internal node has exactly two
children. For this problem, assume that the only allowed operations are + and ×. Different leaves
may or may not represent different variables.

Every arithmetic expression tree represents a function, transforming input values for the leaf
variables into an output value for the root, by following two simple rules: (1) The value of any
+-node is the sum of the values of its children. (2) The value of any ×-node is the product of the
values of its children.

Two arithmetic expression trees are equivalent if they represent the same function; that is,
the same input values for the leaf variables always leads to the same output value at both roots.

3

http://www.cs.uiuc.edu/class/fa10/cs573/stuff-you-already-know.html
http://www.cs.uiuc.edu/class/fa10/cs573/stuff-you-already-know.html

CS 573 Homework 0 (due September 1, 2010) Fall 2010

×
x +

y z

+

×
x z

×
y x

×
x+

yz

Three equivalent expression trees. Only the third tree is in normal form.

An arithmetic expression tree is in normal form if the parent of every +-node (if any) is another
+-node.

Prove that for any arithmetic expression tree, there is an equivalent arithmetic expression tree
in normal form. [Hint: Be careful. This is trickier than it looks.]

5. Recall that a standard (Anglo-American) deck of 52 playing cards contains 13 cards in each of four
suits: spades («), hearts (ª), diamonds (©), and clubs (¨). Within each suit, the 13 cards have
distinct ranks: 2, 3, 4, 5, 6, 7, 8, 9, 10, jack (J), queen (Q), king (K), and ace (A). The ranks are
ordered 2< 3< · · ·< 9< 10< J <Q < K < A; thus, for example, the jack of spades has higher
rank thank the eight of diamonds.

Professor Jay is about to perform a public demonstration with two decks of cards, one with red
backs (‘the red deck’) and one with blue backs (‘the blue deck’). Both decks lie face-down on a
table in front of Professor Jay, shuffled uniformly and independently. Thus, in each deck, every
permutation of the 52 cards is equally likely.

To begin the demonstration, Professor Jay turns over the top card from each deck. Then, while
he has not yet turned over a three of clubs (3¨), the good Professor hurls the two cards he just
turned over into the thick, pachydermatous outer melon layer of a nearby watermelon (that most
prodigious of household fruits) and then turns over the next card from the top of each deck. Thus,
if 3¨ is the last card in both decks, the demonstration ends with 102 cards embedded in the
watermelon.

(a) What is the exact expected number of cards that Professor Jay hurls into the watermelon?

(b) For each of the statements below, give the exact probability that the statement is true of the
first pair of cards Professor Jay turns over.

i. Both cards are threes.
ii. One card is a three, and the other card is a club.

iii. If (at least) one card is a heart, then (at least) one card is a diamond.
iv. The card from the red deck has higher rank than the card from the blue deck.

(c) For each of the statements below, give the exact probability that the statement is true of the
last pair of cards Professor Jay turns over.

i. Both cards are threes.
ii. One card is a three, and the other card is a club.

iii. If (at least) one card is a heart, then (at least) one card is a diamond.
iv. The card from the red deck has higher rank than the card from the blue deck.

Express each of your answers as rational numbers in simplest form, like 123/4567. Do not submit
proofs—just a list of rational numbers—but you should do them anyway, just for practice.

4

http://www.youtube.com/watch?v=UWvRorX0KhQ
http://www.youtube.com/watch?v=6LYjMHzQ_oU
http://www.youtube.com/watch?v=k1ZGIN0UqJE

CS 573: Graduate Algorithms, Fall 2010
Homework 1

Due Friday, September 10, 2010 at 1pm

Due Monday, September 13, 2010 at 5pm
(in the homework drop boxes in the basement of Siebel)

For this and all future homeworks, groups of up to three students may submit a single,
common solution. Please neatly print (or typeset) the full name and NetID on each page of
your submission.

1. Two graphs are said to be isomorphic if one can be transformed into the other just by relabeling the
vertices. For example, the graphs shown below are isomorphic; the left graph can be transformed
into the right graph by the relabeling (1,2, 3,4, 5,6, 7) 7→ (c, g, b, e, a, f , d).

1 2

3 4 5

6 7

c

g

b

e

f

a

d

Two isomorphic graphs.

Consider the following related decision problems:

• GRAPHISOMORPHISM: Given two graphs G and H, determine whether G and H are isomorphic.

• EVENGRAPHISOMORPHISM: Given two graphs G and H, such that every vertex in G and H has
even degree, determine whether G and H are isomorphic.

• SUBGRAPHISOMORPHISM: Given two graphs G and H, determine whether G is isomorphic to a
subgraph of H.

(a) Describe a polynomial-time reduction from EVENGRAPHISOMORPHISM to GRAPHISOMORPHISM.

(b) Describe a polynomial-time reduction from GRAPHISOMORPHISM to EVENGRAPHISOMORPHISM.

(c) Describe a polynomial-time reduction from GRAPHISOMORPHISM to SUBGRAPHISOMORPHISM.

(d) Prove that SUBGRAPHISOMORPHISM is NP-complete.

(e) What can you conclude about the NP-hardness of GRAPHISOMORPHISM? Justify your answer.

[Hint: These are all easy!]

2. Suppose you are given a magic black box that can solve the 3COLORABLE problem in polynomial
time. That is, given an arbitrary graph G as input, the magic black box returns TRUE if G has
a proper 3-coloring, and returns FALSE otherwise. Describe and analyze a polynomial-time
algorithm that computes an actual proper 3-coloring of a given graph G, or correctly reports that
no such coloring exists, using this magic black box as a subroutine. [Hint: The input to the black
box is a graph. Just a graph. Nothing else.]

CS 573 Homework 2 (due September 13, 2010) Fall 2010

3. Let G be an undirected graph with weighted edges. A heavy Hamiltonian cycle is a cycle C that
passes through each vertex of G exactly once, such that the total weight of the edges in C is at
least half of the total weight of all edges in G. Prove that deciding whether a graph has a heavy
Hamiltonian cycle is NP-complete.

4

8

2

7

5

3

1

12
8

6

5

9

5

A heavy Hamiltonian cycle. The cycle has total weight 34; the graph has total weight 67.

4. Consider the following solitaire game. The puzzle consists of an n×m grid of squares, where each
square may be empty, occupied by a red stone, or occupied by a blue stone. The goal of the puzzle
is to remove some of the given stones so that the remaining stones satisfy two conditions: (1)
every row contains at least one stone, and (2) no column contains stones of both colors. For some
initial configurations of stones, reaching this goal is impossible.

A solvable puzzle and one of its many solutions. An unsolvable puzzle.

Prove that it is NP-hard to determine, given an initial configuration of red and blue stones,
whether the puzzle can be solved.

5. A boolean formula in exclusive-or conjunctive normal form (XCNF) is a conjunction (AND) of
several clauses, each of which is the exclusive-or of one or more literals. For example:

(u⊕ v⊕ w̄⊕ x)∧ (ū⊕ w̄⊕ y)∧ (v̄⊕ y)∧ (ū⊕ v̄⊕ x ⊕ y)∧ (w⊕ x)∧ y

The XCNF-SAT problem asks whether a given XCNF boolean formula is satisfiable. Either describe
a polynomial-time algorithm for XCNF-SAT or prove that it is NP-complete.

1

CS 573 Homework 2 (due September 27, 2010) Fall 2010

CS 573: Graduate Algorithms, Fall 2010
Homework 2

Due Monday, September 27, 2010 at 5pm
(in the homework drop boxes in the basement of Siebel)

• For this and all future homeworks, groups of up to three students may submit a single, common
solution. Please neatly print (or typeset) the full name and NetID of every group member on the
first page of your submission.

• We will use the following rubric to grade all dynamic programming algorithms:

– 60% for a correct recurrence (including base cases and a plain-English specification); no
credit for anything else if this is wrong.

– 10% for describing a suitable memoization data structure.

– 20% for describing a correct evaluation order. (A clear picture is sufficient.)

– 10% point for analyzing the running time of the resulting algorithm.

Official solutions will always include pseudocode for the final dynamic programming algorithm,
but this is not required for full credit. However, if you do provide correct pseudocode for the
dynamic programming algorithm, it is not necessary to separately describe the recurrence, the
memoization data structure, or the evaluation order.

It is not necessary to state a space bound. There is no penalty for using more space than the
official solution, but +1 extra credit for using less space with the same (or better) running time.

• The official solution for every problem will provide a target time bound. Algorithms faster than the
official solution are worth more points (as extra credit); algorithms slower than the official solution
are worth fewer points. For slower algorithms, partial credit is scaled to the lower maximum
score. For example, if a full dynamic programming algorithm would be worth 5 points, just the
recurrence is worth 3 points. However, incorrect algorithms are worth zero points, no matter how
fast they are.

• Greedy algorithms must be accompanied by proofs of correctness in order to receive any credit.
Otherwise, any correct algorithm, no matter how slow, is worth at least 2½ points, assuming
it is properly analyzed.

1. Suppose you are given an array A[1 .. n] of positive integers. Describe and analyze an algorithm to
find the smallest positive integer that is not an element of A in O(n) time.

2. Suppose you are given an m× n bitmap, represented by an array M[1 .. m, 1 .. n] whose entries
are all 0 or 1. A solid block is a subarray of the form M[i .. i′, j .. j′] in which every bit is equal to 1.
Describe and analyze an efficient algorithm to find a solid block in M with maximum area.

1

CS 573 Homework 2 (due September 27, 2010) Fall 2010

3. Let T be a tree in which each edge e has a weight w(e). A matching M in T is a subset of the edges
such that each vertex of T is incident to at most one edge in M . The weight of a matching M is
the sum of the weights of its edges. Describe and analyze an algorithm to compute a maximum
weight matching, given the tree T as input.

4. For any string x and any non-negative integer k, let xk denote the string obtained by concatenating
k copies of x . For example, STRING3 =STRINGSTRINGSTRING and STRING0 is the empty string.

A repetition of x is a prefix of xk for some integer k. For example, STRINGSTRINGSTRINGST
and STR are both repetitions of STRING, as is the empty string.

An interleaving of two strings x and y is any string obtained by shuffling a repetition of x
with a repetition of y . For example, STRWORINDGSTWORIRNGDWSTORR is an interleaving of STRING
and WORD, as is the empty string.

Describe and analyze an algorithm that accepts three strings x , y , and z as input, and decides
whether z is an interleaving of x and y .

5. Every year, as part of its annual meeting, the Antarctican Snail Lovers of Upper Glacierville hold a
Round Table Mating Race. Several high-quality breeding snails are placed at the edge of a round
table. The snails are numbered in order around the table from 1 to n. During the race, each snail
wanders around the table, leaving a trail of slime behind it. The snails have been specially trained
never to fall off the edge of the table or to cross a slime trail, even their own. If two snails meet,
they are declared a breeding pair, removed from the table, and whisked away to a romantic hole
in the ground to make little baby snails. Note that some snails may never find a mate, even if the
race goes on forever.

For every pair of snails, the Antarctican SLUG race organizers have posted a monetary reward,
to be paid to the owners if that pair of snails meets during the Mating Race. Specifically, there
is a two-dimensional array M[1 .. n, 1 .. n] posted on the wall behind the Round Table, where
M[i, j] = M[j, i] is the reward to be paid if snails i and j meet.

Describe and analyze an algorithm to compute the maximum total reward that the organizers
could be forced to pay, given the array M as input.

1

2

3

4

5

6

7

8 8

1

5 2

6

3
4

7

The end of a typical Antarctican SLUG race. Snails 6 and 8 never find mates.
The organizers must pay M[3,4] +M[2,5] +M[1,7].

2

CS 573 Homework 3 (due October 18, 2010) Fall 2010

CS 573: Graduate Algorithms, Fall 2010
Homework 3

Due Monday, October 18, 2010 at 5pm
(in the homework drop boxes in the basement of Siebel)

1. Suppose we are given two arrays C[1 .. n] and R[1 .. n] of positive integers. An n× n matrix of 0s
and 1s agrees with R and C if, for every index i, the ith row contains R[i] 1s, and the ith column
contains C[i] 1s. Describe and analyze an algorithm that either constructs a matrix that agrees
with R and C , or correctly reports that no such matrix exists.

2. Suppose we have n skiers with heights given in an array P[1 .. n], and n skis with heights given in
an array S[1 .. n]. Describe an efficient algorithm to assign a ski to each skier, so that the average
difference between the height of a skier and her assigned ski is as small as possible. The algorithm
should compute a permutation σ such that the expression

1

n

n
∑

i=1

�

�P[i]− S[σ(i)]
�

�

is as small as possible.

3. Alice wants to throw a party and she is trying to decide who to invite. She has n people to choose
from, and she knows which pairs of these people know each other. She wants to pick as many
people as possible, subject to two constraints:

• For each guest, there should be at least five other guests that they already know.

• For each guest, there should be at least five other guests that they don’t already know.

Describe and analyze an algorithm that computes the largest possible number of guests Alice can
invite, given a list of n people and the list of pairs who know each other.

4. Consider the following heuristic for constructing a vertex cover of a connected graph G: return
the set of non-leaf nodes in any depth-first spanning tree of G.

(a) Prove that this heuristic returns a vertex cover of G.

(b) Prove that this heuristic returns a 2-approximation to the minimum vertex cover of G.

(c) Describe an infinite family of graphs for which this heuristic returns a vertex cover of size
2·OPT .

5. Suppose we want to route a set of N calls on a telecommunications network that consist of a cycle
on n nodes, indexed in order from 0 to n− 1. Each call has a source node and a destination node,
and can be routed either clockwise or counterclockwise around the cycle. Our goal is to route
the calls so as to minimize the overall load on the network. The load Li on any edge (i, (i + 1)
mod n) is the number of calls routed through that edge, and the overall load is maxi Li . Describe
and analyze an efficient 2-approximation algorithm for this problem.

1

CS 573 Homework 4 (due November 1, 2010) Fall 2010

CS 573: Graduate Algorithms, Fall 2010
Homework 4

Due Monday, November 1, 2010 at 5pm
(in the homework drop boxes in the basement of Siebel)

1. Consider an n-node treap T . As in the lecture notes, we identify nodes in T by the ranks of their
search keys. Thus, ‘node 5’ means the node with the 5th smallest search key. Let i, j, k be integers
such that 1≤ i ≤ j ≤ k ≤ n.

(a) What is the exact probability that node j is a common ancestor of node i and node k?

(b) What is the exact expected length of the unique path from node i to node k in T?

2. Let M[1 .. n, 1 .. n] be an n× n matrix in which every row and every column is sorted. Such an
array is called totally monotone. No two elements of M are equal.

(a) Describe and analyze an algorithm to solve the following problem in O(n) time: Given indices
i, j, i′, j′ as input, compute the number of elements of M smaller than M[i, j] and larger
than M[i′, j′].

(b) Describe and analyze an algorithm to solve the following problem in O(n) time: Given
indices i, j, i′, j′ as input, return an element of M chosen uniformly at random from the
elements smaller than M[i, j] and larger than M[i′, j′]. Assume the requested range is
always non-empty.

(c) Describe and analyze a randomized algorithm to compute the median element of M in
O(n log n) expected time.

3. Suppose we are given a complete undirected graph G, in which each edge is assigned a weight
chosen independently and uniformly at random from the real interval [0, 1]. Consider the following
greedy algorithm to construct a Hamiltonian cycle in G. We start at an arbitrary vertex. While
there is at least one unvisited vertex, we traverse the minimum-weight edge from the current
vertex to an unvisited neighbor. After n− 1 iterations, we have traversed a Hamiltonian path; to
complete the Hamiltonian cycle, we traverse the edge from the last vertex back to the first vertex.
What is the expected weight of the resulting Hamiltonian cycle? [Hint: What is the expected
weight of the first edge? Consider the case n= 3.]

1

CS 573 Homework 4 (due November 1, 2010) Fall 2010

4. (a) Consider the following deterministic algorithm to construct a vertex cover C of a graph G.

VERTEXCOVER(G):
C ← ;
while C is not a vertex cover

pick an arbitrary edge uv that is not covered by C
add either u or v to C

return C

Prove that VERTEXCOVER can return a vertex cover that is Ω(n) times larger than the smallest
vertex cover. You need to describe both an input graph with n vertices, for any integer n, and
the sequence of edges and endpoints chosen by the algorithm.

(b) Now consider the following randomized variant of the previous algorithm.

RANDOMVERTEXCOVER(G):
C ← ;
while C is not a vertex cover

pick an arbitrary edge uv that is not covered by C
with probability 1/2

add u to C
else

add v to C
return C

Prove that the expected size of the vertex cover returned by RANDOMVERTEXCOVER is at most
2 ·OPT, where OPT is the size of the smallest vertex cover.

(c) Let G be a graph in which each vertex v has a weight w(v). Now consider the following
randomized algorithm that constructs a vertex cover.

RANDOMWEIGHTEDVERTEXCOVER(G):
C ← ;
while C is not a vertex cover

pick an arbitrary edge uv that is not covered by C
with probability w(v)/(w(u) +w(v))

add u to C
else

add v to C
return C

Prove that the expected weight of the vertex cover returned by RANDOMWEIGHTEDVERTEXCOVER

is at most 2 ·OPT, where OPT is the weight of the minimum-weight vertex cover. A correct
answer to this part automatically earns full credit for part (b).

2

CS 573 Homework 4 (due November 1, 2010) Fall 2010

5. (a) Suppose n balls are thrown uniformly and independently at random into m bins. For any
integer k, what is the exact expected number of bins that contain exactly k balls?

(b) Consider the following balls and bins experiment, where we repeatedly throw a fixed number
of balls randomly into a shrinking set of bins. The experiment starts with n balls and n bins.
In each round i, we throw n balls into the remaining bins, and then discard any non-empty
bins; thus, only bins that are empty at the end of round i survive to round i+ 1.

BALLSDESTROYBINS(n):
start with n empty bins
while any bins remain

throw n balls randomly into the remaining bins
discard all bins that contain at least one ball

Suppose that in every round, precisely the expected number of bins are empty. Prove that
under these conditions, the experiment ends after O(log∗ n) rounds.1

?(c) [Extra credit] Now assume that the balls are really thrown randomly into the bins in each
round. Prove that with high probability, BALLSDESTROYBINS(n) ends after O(log∗ n) rounds.

(d) Now consider a variant of the previous experiment in which we discard balls instead of bins.
Again, the experiment n balls and n bins. In each round i, we throw the remaining balls into
n bins, and then discard any ball that lies in a bin by itself; thus, only balls that collide in
round i survive to round i+ 1.

BINSDESTROYSINGLEBALLS(n):
start with n balls
while any balls remain

throw the remaining balls randomly into n bins
discard every ball that lies in a bin by itself
retrieve the remaining balls from the bins

Suppose that in every round, precisely the expected number of bins contain exactly one ball.
Prove that under these conditions, the experiment ends after O(log log n) rounds.

?(e) [Extra credit] Now assume that the balls are really thrown randomly into the bins in each
round. Prove that with high probability, BINSDESTROYSINGLEBALLS(n) ends after O(log log n)
rounds.

1Recall that the iterated logarithm is defined as follows: log∗ n= 0 if n≤ 1, and log∗ n= 1+ log∗(lg n) otherwise.

3

CS 573 Homework 5 (due November 19, 2010) Fall 2010

CS 573: Graduate Algorithms, Fall 2010
Homework 5

Due Friday, November 19, 2010 at 5pm
(in the homework drop boxes in the basement of Siebel)

1. Suppose we are given a set of boxes, each specified by their height, width, and depth in centimeters.
All three side lengths of every box lie strictly between 10cm and 20cm. As you should expect, one
box can be placed inside another if the smaller box can be rotated so that its height, width, and
depth are respectively smaller than the height, width, and depth of the larger box. Boxes can be
nested recursively. Call a box is visible if it is not inside another box.

Describe and analyze an algorithm to nest the boxes so that the number of visible boxes is as
small as possible.

2. Suppose we are given an array A[1 .. m][1 .. n] of non-negative real numbers. We want to round A
to an integer matrix, by replacing each entry x in A with either bxc or dxe, without changing the
sum of entries in any row or column of A. For example:







1.2 3.4 2.4
3.9 4.0 2.1
7.9 1.6 0.5






7−→







1 4 2
4 4 2
8 1 1







Describe an efficient algorithm that either rounds A in this fashion, or reports correctly that no
such rounding is possible.

3. The Autocratic Party is gearing up their fund-raising campaign for the 2012 election. Party
leaders have already chosen their slate of candidates for president and vice-president, as well as
various governors, senators, representatives, city council members, school board members, and
dog-catchers. For each candidate, the party leaders have determined how much money they must
spend on that candidate’s campaign to guarantee their election.

The party is soliciting donations from each of its members. Each voter has declared the total
amount of money they are willing to give each candidate between now and the election. (Each
voter pledges different amounts to different candidates. For example, everyone is happy to donate
to the presidential candidate,1 but most voters in New York will not donate anything to the
candidate for Trash Commissioner of Los Angeles.) Federal election law limits each person’s total
political contributions to $100 per day.

Describe and analyze an algorithm to compute a donation schedule, describing how much
money each voter should send to each candidate on each day, that guarantees that every candidate
gets enough money to win their election. (Party members will of course follow their given schedule
perfectly.2) The schedule must obey both Federal laws and individual voters’ budget constraints. If
no such schedule exists, your algorithm should report that fact.

1or some nice men in suits will be visiting their home.
2It’s a nice house you’ve got here. Shame if anything happened to it.

1

CS 573 Homework 5 (due November 19, 2010) Fall 2010

4. Consider an n× n grid, some of whose cells are marked. A monotone path through the grid starts
at the top-left cell, moves only right or down at each step, and ends at the bottom-right cell. We
want to compute the minimum number of monotone paths that cover all the marked cells.

(a) One of your friends suggests the following greedy strategy:

• Find (somehow) one “good” path π that covers the maximum number of marked cells.
• Unmark the cells covered by π.
• If any cells are still marked, recursively cover them.

Prove that this greedy strategy does not always compute an optimal solution.

Greedily covering the marked cells in a grid with four monotone paths.

(b) Describe and analyze an efficient algorithm to compute the smallest set of monotone paths
that covers every marked cell. The input to your algorithm is an array M[1 .. n, 1 .. n] of
booleans, where M[i, j] = TRUE if and only if cell (i, j) is marked.

5. Let G be a directed graph with two distinguished vertices s and t, and let r be a positive integer.
Two players named Paul and Sally play the following game. Paul chooses a path P from s to t,
and Sally chooses a subset S of at most r edges in G. The players reveal their chosen subgraphs
simultaneously. If P ∩ S = ∅, Paul wins; if P ∩ S 6= ∅, then Sally wins. Both players want to
maximize their chances of winning the game.

(a) Prove that if Paul uses a deterministic strategy, and Sally knows his strategy, then Sally can
guarantee that she wins.3

(b) Let M be the number of edges in a minimum (s, t)-cut. Describe a deterministic strategy for
Sally that guarantees that she wins when r ≥ M , no matter what strategy Paul uses.

(c) Prove that if Sally uses a deterministic strategy, and Paul knows her strategy then Paul can
guarantee that he wins when r < M .

(d) Describe a randomized strategy for Sally that guarantees that she wins with probability at
least min{r/M , 1}, no matter what strategy Paul uses.

(e) Describe a randomized strategy for Paul that guarantees that he loses with probability at
most min{r/M , 1}, no matter what strategy Sally uses.

Paul and Sally’s strategies are, of course, algorithms. (For example, Paul’s strategy is an
algorithm that takes the graph G and the integer r as input and produces a path P as output.) You
do not need to analyze the running times of these algorithms, but you must prove all claims about
their winning probabilities. Most of these questions are easy.

3“Good old rock. Nothing beats rock. . . . D’oh!”

2

CS 573: Graduate Algorithms, Fall 2010
Homework 5

Practice only — Do not submit solutions

1. (a) Describe how to transform any linear program written in general form into an equivalent
linear program written in slack form.

maximize
d
∑

j=1
c j x j

subject to
d
∑

j=1
ai j x j≤ bi for each i = 1 .. p

d
∑

j=1
ai j x j= bi for each i = p+ 1 .. p+ q

d
∑

j=1
ai j x j≥ bi for each i = p+ q+ 1 .. n

Z=⇒
max c · x

s.t. Ax= b
x≥ 0

(b) Describe precisely how to dualize a linear program written in slack form.

(c) Describe precisely how to dualize a linear program written in general form.

In all cases, keep the number of variables in the resulting linear program as small as possible.

2. Suppose you have a subroutine that can solve linear programs in polynomial time, but only if they
are both feasible and bounded. Describe an algorithm that solves arbitrary linear programs in
polynomial time. Your algorithm should return an optimal solution if one exists; if no optimum
exists, your algorithm should report that the input instance is UNBOUNDED or INFEASIBLE, whichever
is appropriate. [Hint: Add one variable and one constraint.]

3. An integer program is a linear program with the additional constraint that the variables must take
only integer values.

(a) Prove that deciding whether an integer program has a feasible solution is NP-complete.

(b) Prove that finding the optimal feasible solution to an integer program is NP-hard.

[Hint: Almost any NP-hard decision problem can be formulated as an integer program. Pick your
favorite.]

4. Give a linear-programming formulation of the minimum-cost feasible circulation problem. You
are given a flow network whose edges have both capacities and costs, and your goal is to find a
feasible circulation (flow with value 0) whose cost is as small as possible.

CS 573 Homework 6 (Practice only) Fall 2010

5. Given points (x1, y1), (x2, y2), . . . , (xn, yn) in the plane, the linear regression problem asks for real
numbers a and b such that the line y = ax + b fits the points as closely as possible, according to
some criterion. The most common fit criterion is minimizing the L2 error, defined as follows:1

ε2(a, b) =
n
∑

i=1

(yi − ax i − b)2.

But there are several other fit criteria, some of which can be optimized via linear programming.

(a) The L1 error (or total absolute deviation) of the line y = ax + b is defined as follows:

ε1(a, b) =
n
∑

i=1

�

�yi − ax i − b
�

� .

Describe a linear program whose solution (a, b) describes the line with minimum L1 error.

(b) The L∞ error (or maximum absolute deviation) of the line y = ax + b is defined as follows:

ε∞(a, b) =
n

max
i=1

�

�yi − ax i − b
�

� .

Describe a linear program whose solution (a, b) describes the line with minimum L∞ error.

1This measure is also known as sum of squared residuals, and the algorithm to compute the best fit is normally called
(ordinary/linear) least squares fitting.

2

CS 573 Midterm 1 Questions Fall 2010

This exam lasts 90 minutes.
Write your answers in the separate answer booklet.

Please return this question sheet with your answers.

1. (a) Suppose A[1 .. n] is an array of n distinct integers, sorted so that A[1]< A[2]< · · ·< A[n].
Each integer A[i] could be positive, negative, or zero. Describe and analyze an efficient
algorithm that either computes an index i such that A[i] = i or correctly reports that no such
index exists.

(b) Now suppose A[1 .. n] is a sorted array of n distinct positive integers. Describe and analyze
an even faster algorithm that either computes an index i such that A[i] = i or correctly
reports that no such index exists.

2. A double-Hamiltonian circuit a closed walk in a graph that visits every vertex exactly twice. Prove
that it is NP-hard to determine whether a given graph contains a double-Hamiltonian circuit.

b

d

c

f

g

a

e

This graph contains the double-Hamiltonian circuit a�b�d�g�e�b�d�c� f �a�c� f �g�e�a.

3. A palindrome is any string that is exactly the same as its reversal, like I, or DEED, or HANNAH, or
AMANAPLANACATACANALPANAMA. Describe and analyze an algorithm to find the length of the longest
subsequence of a given string that is also a palindrome.

For example, the longest palindrome subsequence of MAHDYNAMICPROGRAMZLETMESHOWYOUTHEM
is MHYMRORMYHM, so given that string as input, your algorithm should return the integer 11.

4. Suppose you are given a magic black box that can determine in polynomial time, given an
arbitrary graph G, the number of vertices in the largest complete subgraph of G. Describe and
analyze a polynomial-time algorithm that computes, given an arbitrary graph G, a complete
subgraph of G of maximum size, using this magic black box as a subroutine.

5. Suppose we are given a 4× n grid, where each grid cell has an integer value. Suppose we want to
mark a subset of the grid cells, so that the total value of the marked cells is as large as possible.
However, we are forbidden to mark any pair of grid cells that are immediate horizontal or vertical
neighbors. (Marking diagonal neighbors is fine.) Describe and analyze an algorithm that computes
the largest possible sum of marked cells, subject to this non-adjacency condition.

For example, given the grid on the left below, your algorithm should return the integer 36,
which is the sum of the circled numbers on the right.

4 −5 1 6

2 6 −1 8

5 4 3 3

1 −1 7 4

−3 4 5 −2

=⇒

4© −5 1 6©
2 6© −1 8

5© 4 3 3©
1 −1 7© 4

−3 5© 4 −2

1

You may assume the following problems are NP-hard:

CIRCUITSAT: Given a boolean circuit, are there any input values that make the circuit output True?

PLANARCIRCUITSAT: Given a boolean circuit drawn in the plane so that no two wires cross, are there any
input values that make the circuit output True?

3SAT: Given a boolean formula in conjunctive normal form, with exactly three literals per clause, does the
formula have a satisfying assignment?

MAX2SAT: Given a boolean formula in conjunctive normal form, with exactly two literals per clause, what is
the largest number of clauses that can be satisfied by an assignment?

MAXINDEPENDENTSET: Given an undirected graph G, what is the size of the largest subset of vertices in G
that have no edges among them?

MAXCLIQUE: Given an undirected graph G, what is the size of the largest complete subgraph of G?

MINVERTEXCOVER: Given an undirected graph G, what is the size of the smallest subset of vertices that
touch every edge in G?

MINDOMINATINGSET: Given an undirected graph G, what is the size of the smallest subset S of vertices
such that every vertex in G is either in S or adjacent to a vertex in S?

MINSETCOVER: Given a collection of subsets S1, S2, . . . , Sm of a set S, what is the size of the smallest
subcollection whose union is S?

MINHITTINGSET: Given a collection of subsets S1, S2, . . . , Sm of a set S, what is the size of the smallest
subset of S that intersects every subset Si?

3COLOR: Given an undirected graph G, can its vertices be colored with three colors, so that every edge
touches vertices with two different colors?

CHROMATICNUMBER: Given an undirected graph G, what is the minimum number of colors needed to color
its vertices, so that every edge touches vertices with two different colors?

MAXCUT: Given a graph G, what is the size (number of edges) of the largest bipartite subgraph of G?

HAMILTONIANCYCLE: Given a graph G, is there a cycle in G that visits every vertex exactly once?

HAMILTONIANPATH: Given a graph G, is there a path in G that visits every vertex exactly once?

TRAVELINGSALESMAN: Given a graph G with weighted edges, what is the minimum total weight of any
Hamiltonian path/cycle in G?

SUBSETSUM: Given a set X of positive integers and an integer k, does X have a subset whose elements
sum to k?

PARTITION: Given a set X of positive integers, can X be partitioned into two subsets with the same sum?

3PARTITION: Given a set X of n positive integers, can X be partitioned into n/3 three-element subsets, all
with the same sum?

MINESWEEPER: Given a Minesweeper configuration and a particular square x , is it safe to click on x?

TETRIS: Given a sequence of N Tetris pieces and a partially filled n× k board, is it possible to play every
piece in the sequence without overflowing the board?

SUDOKU: Given an n× n Sudoku puzzle, does it have a solution?

KENKEN: Given an n× n Ken-Ken puzzle, does it have a solution?

CS 573 Midterm 2 Questions Fall 2010

This exam lasts 90 minutes.
Write your answers in the separate answer booklet.

Please return this question sheet with your answers.

1. Assume we have access to a function RANDOM(k) that returns, given any positive integer k, an
integer chosen independently and uniformly at random from the set {1,2, . . . , k}, in O(1) time.
For example, to perform a fair coin flip, we could call RANDOM(2).

Now suppose we want to write an efficient function RANDOMPERMUTATION(n) that returns a
permutation of the set {1,2, . . . , n} chosen uniformly at random; that is, each permutation must
be chosen with probability 1/n!.

(a) Prove that the following algorithm is not correct. [Hint: Consider the case n= 3.]

RANDOMPERMUTATION(n):
for i← 1 to n

π[i]← i
for i← 1 to n

swap π[i]↔ π[RANDOM(n)]
return π

(b) Describe and analyze a correct RANDOMPERMUTATION algorithm that runs in O(n) expected
time. (In fact, O(n) worst-case time is possible.)

2. Suppose we have n pieces of candy with weights W[1 .. n] (in ounces) that we want to load into
boxes. Our goal is to load the candy into as many boxes as possible, so that each box contains at
least L ounces of candy. Describe an efficient 2-approximation algorithm for this problem. Prove
that the approximation ratio of your algorithm is 2.

(For 7 points partial credit, assume that every piece of candy weighs less than L ounces.)

3. The MAXIMUM-k-CUT problem is defined as follows. We are given a graph G with weighted edges
and an integer k. Our goal is to partition the vertices of G into k subsets S1, S2, . . . , Sk, so that
the sum of the weights of the edges that cross the partition (that is, with endpoints in different
subsets) is as large as possible.

(a) Describe an efficient randomized approximation algorithm for MAXIMUM-k-CUT, and prove
that its expected approximation ratio is at most (k− 1)/k.

(b) Now suppose we want to minimize the sum of the weights of edges that do not cross the
partition. What expected approximation ratio does your algorithm from part (a) achieve for
this new problem? Prove your answer is correct.

1

CS 573 Midterm 2 Questions Fall 2010

4. The citizens of Binaria use coins whose values are powers of two. That is, for any non-negative
integer k, there are Binarian coins with value is 2k bits. Consider the natural greedy algorithm
to make x bits in change: If x > 0, use one coin with the largest denomination d ≤ x and
then recursively make x − d bits in change. (Assume you have an unlimited supply of each
denomination.)

(a) Prove that this algorithm uses at most one coin of each denomination.

(b) Prove that this algorithm finds the minimum number of coins whose total value is x .

5. Any permutation π can be represented as a set of disjoint cycles, by considering the directed graph
whose vertices are the integers between 1 and n and whose edges are i�π(i) for each i. For
example, the permutation 〈5,4, 2,6, 7,8, 1,3, 9〉 has three cycles: (175) (24683) (9).

In the following questions, let π be a permutation of {1, 2, . . . , n} chosen uniformly at random,
and let k be an arbitrary integer such that 1≤ k ≤ n.

(a) Prove that the probability that the number 1 lies in a cycle of length k in π is precisely 1/n.
[Hint: Consider the cases k = 1 and k = 2.]

(b) What is the exact expected length of the cycle in π that contains the number 1?

(c) What is the exact expected number of cycles of length k in π?

(d) What is the exact expected number of cycles in π?

You may assume part (a) in your solutions to parts (b), (c), and (d).

2

CS 573 Final Exam Questions Fall 2010

This exam lasts 180 minutes.
Write your answers in the separate answer booklet.

Please return this question sheet with your answers.

1. A subset S of vertices in an undirected graph G is called triangle-free if, for every triple of vertices
u, v, w ∈ S, at least one of the three edges uv, uw, vw is absent from G. Prove that finding the size
of the largest triangle-free subset of vertices in a given undirected graph is NP-hard.

A triangle-free subset of 7 vertices.
This is not the largest triangle-free subset in this graph.

2. An n× n grid is an undirected graph with n2 vertices organized into n rows and n columns. We
denote the vertex in the ith row and the jth column by (i, j). Every vertex in the grid have exactly
four neighbors, except for the boundary vertices, which are the vertices (i, j) such that i = 1, i = n,
j = 1, or j = n.

Let (x1, y1), (x2, y2), . . . , (xm, ym) be distinct vertices, called terminals, in the n× n grid. The
escape problem is to determine whether there are m vertex-disjoint paths in the grid that connect
the terminals to any m distinct boundary vertices. Describe and analyze an efficient algorithm to
solve the escape problem.

A positive instance of the escape problem, and its solution.

3. Consider the following problem, called UNIQUESETCOVER. The input is an n-element set S, together
with a collection of m subsets S1, S2, . . . , Sm ⊆ S, such that each element of S lies in exactly k
subsets Si . Our goal is to select some of the subsets so as to maximize the number of elements of S
that lie in exactly one selected subset.

(a) Fix a real number p between 0 and 1, and consider the following algorithm:

For each index i, select subset Si independently with probability p.

What is the exact expected number of elements that are uniquely covered by the chosen
subsets? (Express your answer as a function of the parameters p and k.)

(b) What value of p maximizes this expectation?

(c) Describe a polynomial-time randomized algorithm for UNIQUESETCOVER whose expected
approximation ratio is O(1).

1

CS 573 Final Exam Questions Fall 2010

4. Suppose we need to distribute a message to all the nodes in a rooted tree. Initially, only the root
node knows the message. In a single round, any node that knows the message can forward it to at
most one of its children. Describe and analyze an efficient algorithm to compute the minimum
number of rounds required for the message to be delivered to every node.

A message being distributed through a tree in five rounds.

5. Every year, Professor Dumbledore assigns the instructors at Hogwarts to various faculty committees.
There are n faculty members and c committees. Each committee member has submitted a list of
their prices for serving on each committee; each price could be positive, negative, zero, or even
infinite. For example, Professor Snape might declare that he would serve on the Student Recruiting
Committee for 1000 Galleons, that he would pay 10000 Galleons to serve on the Defense Against
the Dark Arts Course Revision Committee, and that he would not serve on the Muggle Relations
committee for any price.

Conversely, Dumbledore knows how many instructors are needed for each committee, as
well as a list of instructors who would be suitable members for each committee. (For example:
“Dark Arts Revision: 5 members, anyone but Snape.”) If Dumbledore assigns an instructor to a
committee, he must pay that instructor’s price from the Hogwarts treasury.

Dumbledore needs to assign instructors to committees so that (1) each committee is full, (3) no
instructor is assigned to more than three committees, (2) only suitable and willing instructors
are assigned to each committee, and (4) the total cost of the assignment is as small as possible.
Describe and analyze an efficient algorithm that either solves Dumbledore’s problem, or correctly
reports that there is no valid assignment whose total cost is finite.

6. Suppose we are given a rooted tree T , where every edge e has a non-negative length `(e). Describe
and analyze an efficient algorithm to assign a stretched length s`(e) ≥ `(e) to every edge e,
satisfying the following conditions:

• Every root-to-leaf path in T has the same total stretched length.

• The total stretch
∑

e(s`(e)− `(e)) is as small as possible.

7. Let G = (V, E) be a directed graph with edge capacities c : E→ R+, a source vertex s, and a target
vertex t. Suppose someone hands you an arbitrary function f : E→ R. Describe and analyze fast
and simple algorithms to answer the following questions:

(a) Is f a feasible (s, t)-flow in G?

(b) Is f a maximum (s, t)-flow in G?

(c) Is f the unique maximum (s, t)-flow in G?

2

Chernoff bounds:

If X is the sum of independent indicator variables and µ= E[X], then

Pr[X > (1+δ)µ]≤
�

eδ

(1+δ)1+δ

�µ

for any δ > 0

Pr[X > (1−δ)µ]≤
�

e−δ

(1−δ)1−δ

�µ

for any 0< δ < 1

You may assume the following running times:

• Maximum flow or minimum cut: O(E| f ∗|) or O(V E log V)
• Minimum-cost maximum flow: O(E2 log2 V)

(These are not the best time bounds known, but they’re close enough for
the final exam.)

You may assume the following problems are NP-hard:

CIRCUITSAT: Given a boolean circuit, are there any input values that make the circuit output True?

PLANARCIRCUITSAT: Given a boolean circuit drawn in the plane so that no two wires cross, are there any
input values that make the circuit output True?

3SAT: Given a boolean formula in conjunctive normal form, with exactly three literals per clause, does the
formula have a satisfying assignment?

MAX2SAT: Given a boolean formula in conjunctive normal form, with exactly two literals per clause, what is
the largest number of clauses that can be satisfied by an assignment?

MAXINDEPENDENTSET: Given an undirected graph G, what is the size of the largest subset of vertices in G
that have no edges among them?

MAXCLIQUE: Given an undirected graph G, what is the size of the largest complete subgraph of G?

MINVERTEXCOVER: Given an undirected graph G, what is the size of the smallest subset of vertices that
touch every edge in G?

MINSETCOVER: Given a collection of subsets S1, S2, . . . , Sm of a set S, what is the size of the smallest
subcollection whose union is S?

MINHITTINGSET: Given a collection of subsets S1, S2, . . . , Sm of a set S, what is the size of the smallest
subset of S that intersects every subset Si?

3COLOR: Given an undirected graph G, can its vertices be colored with three colors, so that every edge
touches vertices with two different colors?

MAXCUT: Given a graph G, what is the size (number of edges) of the largest bipartite subgraph of G?

HAMILTONIANCYCLE: Given a graph G, is there a cycle in G that visits every vertex exactly once?

HAMILTONIANPATH: Given a graph G, is there a path in G that visits every vertex exactly once?

TRAVELINGSALESMAN: Given a graph G with weighted edges, what is the minimum total weight of any
Hamiltonian path/cycle in G?

SUBSETSUM: Given a set X of positive integers and an integer k, does X have a subset whose elements
sum to k?

PARTITION: Given a set X of positive integers, can X be partitioned into two subsets with the same sum?

3PARTITION: Given a set X of n positive integers, can X be partitioned into n/3 three-element subsets, all
with the same sum?

