You have 120 minutes to answer all five questions.
Write your answers in the separate answer booklet.
Please turn in your question sheet and your cheat sheet with your answers.

1. Consider the following modification of the 'dumb' 2 -approximation algorithm for minimum vertex cover that we saw in class. The only change is that we output a set of edges instead of a set of vertices.
```
ApProxMinMAxMATCHING( \(G\) ):
    \(M \leftarrow \varnothing\)
    while G has at least one edge
        let \((u, v)\) be any edge in \(G\)
        remove \(u\) and \(v\) (and their incident edges) from \(G\)
        add \((u, v)\) to \(M\)
    return \(M\)
```

(a) Prove that this algorithm computes a matching-no two edges in M share a common vertex.
(b) Prove that M is a maximal matching- M is not a proper subgraph of another matching in G.
(c) Prove that M contains at most twice as many edges as the smallest maximal matching in G.

The smallest maximal matching in a graph.

A cycle and a star.
2. Consider the following heuristic for computing a small vertex cover of a graph.

- Assign a random priority to each vertex, chosen independently and uniformly from the real interval [0,1] (just like treaps).
- Mark every vertex that does not have larger priority than all of its neighbors.

For any graph G, let $O P T(G)$ denote the size of the smallest vertex cover of G, and let $M(G)$ denote the number of nodes marked by this algorithm.
(a) Prove that the set of vertices marked by this heuristic is always a vertex cover.
(b) Suppose the input graph G is a cycle, that is, a connected graph where every vertex has degree 2. What is the expected value of $M(G) / O P T(G)$? Prove your answer is correct.
(c) Suppose the input graph G is a star, that is, a tree with one central vertex of degree $n-1$. What is the expected value of $M(G) / O P T(G)$? Prove your answer is correct.
3. Suppose we want to write an efficient function $\operatorname{Shuffle}(A[1 . . n])$ that randomly permutes the array A, so that each of the n ! permutations is equally likely.
(a) Prove that the following Shuffle algorithm is not correct. [Hint: There is a two-line proof.]

$$
\begin{aligned}
& \frac{\text { Shuffle }(A[1 . . n]):}{\text { for } i=1 \text { to } n} \\
& \quad \operatorname{swap} A[i] \leftrightarrow A[\operatorname{Random}(n)]
\end{aligned}
$$

(b) Describe and analyze a correct Shuffle algorithm whose expected running time is $O(n)$.

Your algorithm may call the function Random (k), which returns an integer uniformly distributed in the range $\{1,2, \ldots, k\}$ in $O(1)$ time. For example, Random(2) simulates a fair coin flip, and Random(1) always returns 1.
4. Let Φ be a legal input for 3SAT-a boolean formula in conjunctive normal form, with exactly three literals in each clause. Recall that an assignment of boolean values to the variables in Φ satisfies a clause if at least one of its literals is True. The maximum satisfiability problem, sometimes called MAX3SAT, asks for the maximum number of clauses that can be simultaneously satisfied by a single assignment. Solving MaxSat exactly is clearly also NP-hard; this problem asks about approximation algorithms.
(a) Let $\operatorname{MaxSat}(\Phi)$ denote the maximum number of clauses that can be simultaneously satisfied by one variable assignment. Suppose we randomly assign each variable in Φ to be True or False, each with equal probability. Prove that the expected number of satisfied clauses is at least $\frac{7}{8} \operatorname{MaxSat}(\Phi)$.
(b) Let $\operatorname{MinUnsat}(\Phi)$ denote the minimum number of clauses that can be simultaneously unsatisfied by a single assignment. Prove that it is NP-hard to approximate MinUnsat(Φ) within a factor of $10^{10^{100}}$.
5. Consider the following randomized algorithm for generating biased random bits. The subroutine FairCoin returns either 0 or 1 with equal probability; the random bits returned by FairCoin are mutually independent.

```
OneInThree:
    if FairCoin \(=0\)
        return 0
    else
    return 1 - OneInThree
```

(a) Prove that OneInThree returns 1 with probability $1 / 3$.
(b) What is the exact expected number of times that this algorithm calls FairCoin? Prove your answer is correct.
(c) Now suppose you are given a subroutine OneInThree that generates a random bit that is equal to 1 with probability $1 / 3$. Describe a FairCoin algorithm that returns either 0 or 1 with equal probability, using OneInThree as a subroutine. Your only source of randomness is OneInThree; in particular, you may not use the Random function from problem 3.
(d) What is the exact expected number of times that your FairCoin algorithm calls OneInThree? Prove your answer is correct.

