CS 473U: Undergraduate Algorithms, Fall 2006
Homework 3
Due Wednesday, October 4, 2006 in 3229 Siebel Center

Remember to turn in separate, individually stapled solutions to each of the problems.

. Consider a perfect tree of height h, where every non-leaf node has 3 children. (Therefore,
each of the 3" leaves is at distance h from the root.) Every leaf has a boolean value associated
with it - either O or 1. Every internal node gets the boolean value assigned to the majority
of its children. Given the values assigned to the leaves, we want to find an algorithm that
computes the value (0 or 1) of the root.

It is not hard to find a (deterministic) algorithm that looks at every leaf and correctly deter-
mines the value of the root, but this takes O(3") time. Describe and analyze a randomized
algorithm that, on average, looks at asymptotically fewer leaves. That is, the expected num-
ber of leaves your algorithm examines should be o(3").

. We define a meldable heap to be a binary tree of elements, each of which has a priority, such
that the priority of any node is less than the priority of its parent. (Note that the heap does
not have to be balanced, and that the element with greatest priority is the root.) We also
define the priority of a heap to be the priority of its root.

The meld operation takes as input two (meldable) heaps and returns a single meldable heap
H that contains all the elements of both input heaps. We define meld as follows:

e Let H; be the input heap with greater priority, and H» the input heap with lower priority.
(That is, the priority of root(H;) is greater than the priority of root(Hs).) Let Hy, be the
left subtree of root(H;) and Hp be the right subtree of root(H).

e We set root(H) = root(Hy).

e We now flip a coin that comes up either “Left” or “Right” with equal probability.

- If it comes up “Left”, we set the left subtree of root(H) to be Hy, and the right
subtree of root(H ) to be meld(Hpg, Hy) (defined recursively).

— If the coin comes up “Right”, we set the right subtree of root(H) to be Hp, and the
left subtree of root(H) to be meld(Hy,, H2).

e As a base case, melding any heap H; with an empty heap gives H;.

(a) Analyze the expected running time of meld(H,, Hy) if H, is a (meldable) heap with n
elements, and H, is a (meldable) heap with m elements.

(b) Describe how to perform each of the following operations using only melds, and give
the running time of each.
e DeleteMax(H ), which deletes the element with greatest priority.
e Insert(H,x), which inserts the element x into the heap H.

e Delete(H, z), which - given a pointer to element = in heap H - returns the heap with
z deleted.



CS 473U Homework 3 (due October 4, 2006) Fall 2006

3. Randomized Selection. Given an (unsorted) array of n distinct elements and an integer k,
SELECTION is the problem of finding the kth smallest element in the array. One easy solution
is to sort the array in increasing order, and then look up the kth entry, but this takes ©(n log n)
time. The randomized algorithm below attempts to do better, at least on average.

QuickSelect(Array A, n, k)
pivot «+— Random(1, n)
S—{x|xeAx< Apivot]}
s — 5]
L—{x|xe€ A x> Alpivot]}
if(k=s+1)

return Alpivot]
else if (k < s)

return QuickSelect(S, s, k)
else

return QuickSelect(L,n — (s + 1),k — (s + 1))

Here we assume that Random(a, b) returns an integer chosen uniformly at random from a to b
(inclusive of @ and b). The pivot position is randomly chosen; S is the set of elements smaller
than the pivot element, and L the set of elements larger than the pivot. The sets S and L are
found by comparing every other element of A to the pivot. We partition the elements into
these two ‘halves’, and recurse on the appropriate half.

(a) Write a recurrence relation for the expected running time of QuickSelect.
(b) Given any two elements z,y € A, what is the probability that = and y will be compared?
(c) Either from part (a) or part (b), find the expected running time of QuickSelect.

4. [Extra Credit]: In the previous problem, we found a ©(n) algorithm for selecting the kth
smallest element, but the constant hidden in the O(-) notation is somewhat large. It is easy
to find the smallest element using at most n comparisons; we would like to be able to extend
this to larger k. Can you find a randomized algorithm that uses n + O (k log k logn)! expected
comparisons? (Note that there is no constant multiplying the n.)

Hint: While scanning through a random permutation of n elements, how many times does
the smallest element seen so far change? (See HBS 0.) How many times does the kth smallest
element so far change?

'There is an algorithm that uses n + ©(k log(n/k) comparisons, but this is even harder.

2



