CS 473U: Undergraduate Algorithms, Fall 2006 Homework 1

Due Tuesday, September 12, 2006 in 3229 Siebel Center
Starting with this homework, groups of up to three students can submit or present a single joint solution. If your group is submitting a written solution, please remember to print the names, NetIDs, and aliases of every group member on every page. Please remember to submit separate, individually stapled solutions to each of the problems.

1. Recall from lecture that a subsequence of a sequence A consists of a (not necessarily contiguous) collection of elements of A, arranged in the same order as they appear in A. If B is a subsequence of A, then A is a supersequence of B.
(a) Describe and analyze a simple recursive algorithm to compute, given two sequences A and B, the length of the longest common subsequence of A and B. For example, given the strings ALGORITHM and ALTRUISTIC, your algorithm would return 5, the length of the longest common subsequence ALRIT.
(b) Describe and analyze a simple recursive algorithm to compute, given two sequences A and B, the length of a shortest common supersequence of A and B. For example, given the strings ALGORITHM and ALTRUISTIC, your algorithm would return 14, the length of the shortest common supersequence $\overline{\text { ALGT}}$ ORUISTH $\bar{T} M \bar{C}$.
(c) Let $|A|$ denote the length of sequence A. For any two sequences A and B, let $\operatorname{lcs}(A, B)$ denote the length of the longest common subsequence of A and B, and let $\operatorname{scs}(A, B)$ denote the length of the shortest common supersequence of A and B.
Prove that $|\boldsymbol{A}|+|\boldsymbol{B}|=\operatorname{lcs}(\boldsymbol{A}, \boldsymbol{B})+\boldsymbol{\operatorname { s c s }}(\boldsymbol{A}, \boldsymbol{B})$ for all sequences A and B. [Hint: There is a simple non-inductive proof.]

In parts (a) and (b), we are not looking for the most efficient algorithms, but for algorithms with simple and correct recursive structure.
2. You are a contestant on a game show, and it is your turn to compete in the following game. You are presented with an $m \times n$ grid of boxes, each containing a unique number. It costs $\$ 100$ to open a box. Your goal is to find a box whose number is larger than its neighbors in the grid (above, below, left, and right). If you spend less money than your opponents, you win a week-long trip for two to Las Vegas and a year's supply of Rice-A-Roni ${ }^{\mathrm{TM}}$, to which you are hopelessly addicted.
(a) Suppose $m=1$. Describe an algorithm that finds a number that is bigger than any of its neighbors. How many boxes does your algorithm open in the worst case?
(b) Suppose $m=n$. Describe an algorithm that finds a number that is bigger than any of its neighbors. How many boxes does your algorithm open in the worst case?
*(c) [Extra credit] ${ }^{1}$ Prove that your solution to part (b) is asymptotically optimal.

[^0]3. A kd-tree is a rooted binary tree with three types of nodes: horizontal, vertical, and leaf. Each vertical node has a left child and a right child; each horizontal node has a high child and a low child. The non-leaf node types alternate: non-leaf children of vertical nodes are horizontal and vice versa. Each non-leaf node v stores a real number p_{v} called its pivot value. Each node v has an associated region $R(v)$, defined recursively as follows:

- $R(r o o t)$ is the entire plane.
- If v is is a horizontal node, the horizontal line $y=p_{v}$ partitions $R(v)$ into $R(\operatorname{high}(v))$ and $R(\operatorname{low}(v))$ in the obvious way.
- If v is is a vertical node, the vertical line $x=p_{v}$ partitions $R(v)$ into $R(\operatorname{left}(v))$ and $R(\operatorname{right}(v))$ in the obvious way.

Thus, each region $R(v)$ is an axis-aligned rectangle, possibly with one or more sides at infinity. If v is a leaf, we call $R(v)$ a leaf box.

Suppose T is a perfectly balanced kd-tree with n leaves (and thus with depth exactly $\lg n$).
(a) Consider the horizontal line $y=t$, where $t \neq p_{v}$ for all nodes v in T. Exactly how many leaf boxes of T does this line intersect? [Hint: The parity of the root node matters.] Prove your answer is correct. A correct $\Theta(\cdot)$ bound is worth significant partial credit.
(b) Describe and analyze an efficient algorithm to compute, given T and an arbitrary horizontal line ℓ, the number of leaf boxes of T that lie entirely above ℓ.

[^0]: ${ }^{1}$ The "I don't know" rule does not apply to extra credit problems. There is no such thing as "partial extra credit".

