
CS473ug Head Banging Session #5 10/03/06 - 10/05/06

1. Simulating Queues with Stacks

A queue is a first-in-first-out data structure. It supports two operations push and pop. Push adds a
new item to the back of the queue, while pop removes the first item from the front of the queue. A
stack is a last-in-first-out data structure. It also supports push and pop. As with a queue, push adds
a new item to the back of the queue. However, pop removes the last item from the back of the queue
(the one most recently added).

Show how you can simulate a queue by using two stacks. Any sequence of pushes and pops should run
in amortized constant time.

2. Multistacks

A multistack consists of an infinite series of stacks S0, S1, S2, . . . , where the ith stack Si can hold up
to 3i elements. Whenever a user attempts to push an element onto any full stack Si, we first move
all the elements in Si to stack Si+1 to make room. But if Si+1 is already full, we first move all its
members to Si+2, and so on. To clarify, a user can only push elements onto S0. All other pushes and
pops happen in order to make space to push onto S0. Moving a single element from one stack to the
next takes O(1) time.

Figure 1. Making room for one new element in a multistack.

(a) In the worst case, how long does it take to push one more element onto a multistack containing
n elements?

(b) Prove that the amortized cost of a push operation is O(log n), where n is the maximum number
of elements in the multistack.

3. Powerhungry function costs

A sequence of n operations is performed on a data structure. The ith operation costs i if i is an exact
power of 2, and 1 otherwise. Determine the amortized cost of the operation.

1


