1. Randomized Edge Cuts

We will randomly partition the vertex set of a graph G into two sets S and T. The algorithm is to flip a coin for each vertex and with probability $1 / 2$, put it in S; otherwise put it in T.
(a) Show that the expected number of edges with one endpoint in S and the other endpoint in T is exactly half the edges in G.
(b) Now say the edges have weights. What can you say about the sum of the weights of the edges with one endpoint in S and the other endpoint in T ?

2. Skip Lists

A skip list is built in layers. The bottom layer is an ordinary sorted linked list. Each higher layer acts as an "express lane" for the lists below, where an element in layer i appears in layer $i+1$ with some fixed probability p.

1
1-----4---6
1---3-4---6-----9
$1-2-3-4-5-6-7-8-9-10$
(a) What is the probability a node reaches height h.
(b) What is the probability any node is above $c \log n$ (for some fixed value of c)?

Compute the value explicitly when $p=1 / 2$ and $c=4$.
(c) To search for an entry x, scan the top layer until you find the last entry y that is less than or equal to x. If $y<x$, drop down one layer and in this new layer (beginning at y) find the last entry that is less than or equal to x. Repeat this process (dropping down a layer, then finding the last entry less than or equal to x) until you either find x or reach the bottom layer and confirm that x is not in the skip list. What is the expected search time?
(d) Describe an efficient method for insertion. What is the expected insertion time?

3. Clock Solitaire

In a standard deck of 52 cards, put 4 face-down in each of the 12 'hour' positions around a clock, and 4 face-down in a pile in the center. Turn up a card from the center, and look at the number on it. If it's number x, place the card face-up next to the face-down pile for x, and turn up the next card in the face-down pile for x (that is, the face-down pile corresponding to hour x). You win if, for each Ace $\leq x \leq$ Queen, all four cards of value x are turned face-up before all four Kings (the center cards) are turned face-up.
What is the probability that you win a game of Clock Solitaire?

