1. Self-reductions

In each case below assume that you are given a black box which can answer the decision version of the indicated problem. Use a polynomial number of calls to the black box to construct the desired set.
(a) Independent set: Given a graph G and an integer k, does G have a subset of k vertices that are pairwise nonadjacent?
(b) Subset sum: Given a multiset (elements can appear more than once) $X=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ of positive integers, and a positive integer S does there exist a subset of X with sum exactly S ?

2. Lower Bounds

Give adversary arguments to prove the indicated lower bounds for the following problems:
(a) Searching in a sorted array takes at least $1+\left\lfloor\lg _{2} n\right\rfloor$ queries.
(b) Let M be an $n \times n$ array of real values that is increasing in both rows and columns. Prove that searching for a value requires at least n queries.

3. k-coloring

Show that we can solve the problem of constructing a k-coloring of a graph by using a polynomial number of calls to a black box that determines whether a graph has such a k-coloring. (Hint: Try reducing via an intermediate problem that asks whether a partial coloring of a graph can be extended to a proper k-coloring.)

