
CS 373: Combinatorial Algorithms, Fall 2002
http://www-courses.cs.uiuc.edu/˜cs373

Homework 6 (Do not hand in!)

Name:
Net ID: Alias: U 3/4 1

Name:
Net ID: Alias: U 3/4 1

Name:
Net ID: Alias: U 3/4 1

Neatly print your name(s), NetID(s), and the alias(es) you used for Homework 0 in the boxes above. Please also tell
us whether you are an undergraduate, 3/4-unit grad student, or 1-unit grad student by circling U,3/4, or 1, respectively.
Staple this sheet to the top of your homework.

Required Problems

1. (10 points) Prove that SAT is still a NP-complete problem even under the following constraints: each variable
must show up once as a positive literal and once or twice as a negative literal in the whole expression. For
instance, (A∨B̄)∧(Ā∨C∨D) ∧ (Ā∨B∨C̄∨D̄) satisfies the constraints, while (A∨B̄)∧(Ā∨C∨D) ∧ (A∨B∨C̄∨D̄)
does not, because positive literal A appears twice.

2. (10 points) A domino is 2× 1 rectanble divided into two squares, with a certain number of pips(dots) in each
square. In most domino games, the players lay down dominos at either end of a single chain. Adjacent dominos
in the chain must have matching numbers. (See the figure below.)
Describe and analyze an efficient algorithm, or prove that it is NP-complete, to determine wheter a given set of n
dominos can be lined up in a single chain. For example, for the sets of dominos shown below, the correct output
is TRUE.

Top: A set of nine dominos
Bottom:The entire set lined up in a single chain

3. (10 points) Prove that the following 2 problems are NP-complete. Given an undirected GraphG = (V, E), a
subset of verticesV ′⊆V, and a positive integerk:

(a) determine whether there is a spanning treeT of G whose leaves are the same asV′.

(b) determine whether there is a spanning treeT of G whose degree of vertices are all less than k.

4. (10 points) An optimized version of Knapsack problem is defined as follows. Given a finite set of elementsU
where each element of the setu∈U has its own sizes(u) > 0 and the valuev(u) > 0, maximizeA(U′) =

∑
u∈U′

v(u)

under the condition
∑

u∈U′
s(u)≤B andU′⊆U. This problem is NP-hard. Consider the following polynomial time

approximation algorithm. Determine the worst case approximation ratioR(U) = max
U

Opt(U)/Approx(U) and

prove it.

AA:
A1← Greedy()
A2← S ingleElement()
return max(A1, A2)

G:
Put all the elementsu∈U into an arrayA[i]
SortA[i] by v(u)/s(u) in a decreasing order
S ← 0
V ← 0
for i ← 0 to NumOfElements

if (S + s(u[i]) > B)
break

S ← S + s(u[i])
V ← V + v(u[i])

return V

SE:
Put all the elementsu∈U into an arrayA[i]
V ← 0
for i ← 0 to NumOfElements

if (s(u[i]) ≤ B & V < v(u[i]))
V ← v(u[i])

return V

5. (10 points) The recursion fairy’s distant cousin, the reduction genie, shows up one day with a magical gift for
you: a box that determines in constant time whether or not a graph is 3-colorable.(A graph is 3-colorable if you
can color each of the vertices red, green, or blue, so that every edge has do different colors.) The magic box
does not tell you how to color the graph, just wheter or not it can be done. Devise and analyze an algorithm to
3-color any graph inpolynomial time using the magic box.

6. (10 points) The following is an NP-hard version of PARTITION problem.

PARTITION(NP-):
Given a set of n positive integersS = {ai|i = 0 ... n − 1},

minimize max

(∑
ai∈T

ai,
∑

ai∈S−T
ai

)

whereT is a subset ofS .

A polynomial time approximation algorithm is given in what follows. Determine the worst case approximation
ratio min

S
Approx(S)/Opt(S) and prove it.

2

AA:
Sort S in an increasing order
s1← 0
s2← 0
for i← 0 to n

if s1 ≤ s2
s1← s1+ ai

else
s2← s2+ ai

result← max(s1, s2)

Practice Problems

1. Construct a linear time algorithm for 2 SAT problem.

2. Assume thatP � NP. Prove that there is no polynomial time approximation algorithm for an optimized version
of Knapsack problem, which outputsA(I) s.t. |Opt(I) − A(I)| ≤ K for any instanceI, whereK is a constant.

3. Your friend Toidi is planning to hold a party for the coming Christmas. He wants to take a picture of all the
participants including himself, but he is quiteshy and thus cannot take a picture of a person whom he does not
know very well. Since he has onlyshy friends, every participant coming to the party is alsoshy. After a long
struggle of thought he came up with a seemingly good idea:

• At the beginning, he has a camera.

• A person, holding a camera, is able to take a picture of another participant whom the person knows very
well, and pass a camera to that participant.

• Since he does not want to waste films, everyone has to be taken a picture exactly once.

Although there can be some people whom he does not know very well, he knows completely who knows whom
well. Therefore, in theory, given a list of all the participants, he can determine if it is possible to take all the
pictures using this idea. Since it takes only linear time to take all the pictures if he is brave enough (say “Say
cheese!” N times, where N is the number of people), as a student taking CS373, you are highly expected to give
him an advice:

• show him an efficient algorithm to determine if it is possible to take pictures of all the participants using
his idea, given a list of people coming to the party.

• or prove that his idea is essentially facing a NP-complete problem, make him give up his idea, and give
him an efficient algorithm to practice saying “Say cheese!”:

e.g.,
for i← 0 to N

Make him say “Say cheese!” 2i times
oops, it takes exponential time...

4. Show, given a set of numbers, that you can decide wheter it has a subset of size 3 that adds to zero in polynomial
time.

3

5. Given a CNF-normalized form that has at most one negative literal in each clause, construct an efficient algo-
rithm to solve the satisfiability problem for these clauses. For instance,

(A ∨ B ∨ C̄) ∧ (B ∨ Ā),

(A ∨ B̄ ∨C) ∧ (B ∨ Ā ∨ D) ∧ (A ∨ D),

(Ā ∨ B) ∧ (B ∨ Ā ∨ C) ∧ (C ∨ D)

satisfy the condition, while

(Ā ∨ B ∨ C̄) ∧ (B ∨ Ā),

(A ∨ B̄ ∨C) ∧ (B ∨ Ā ∨ D̄) ∧ (A ∨ D),

(Ā ∨ B) ∧ (B ∨ Ā ∨ C) ∧ (C̄ ∨ D̄)

do not.

6. The ExactCoverByThrees problem is defined as follows: given a finite setX and a collectionC of 3-element
subsets ofX, doesC contain an exact cover forX, that is, a sub-collectionC′ ⊆ C where every element ofX
occurs in exactly one member ofC′? Given that ExactCoverByThrees is NP-complete, show that the similar
problem ExactCoverByFours is also NP-complete.

7. The LongestS impleCycle problem is the problem of finding a simple cycle of maximum length in a graph.
Convert this to a formal definition of a decision problem and show that it is NP-complete.

4

