CS 373: Combinatorial Algorithms, Fall 2002
Homework 0, due September 5, 2002 at the beginning of class

Name:

Net ID: Alias: U G

Neatly print your name (first name first, with no comma), your network ID, and an alias of your
choice into the boxes above. Circle U if you are an undergraduate, and G if you are a graduate
student. Do not sign your name. Do not write your Social Security number. Staple this
sheet of paper to the top of your homework.

Grades will be listed on the course web site by alias give us, so your alias should not resemble your
name or your Net ID. If you don’t give yourself an alias, we’ll give you one that you won'’t like.

Before you do anything else, please read the Homework Instructions and FAQ on the CS 373
course web page (http://www-courses.cs.uiuc.edu/ cs373 /hwx/faq.html) and then check the box
below. There are 300 students in CS 373 this semester; we are quite serious about giving zeros to
homeworks that don’t follow the instructions.

I have read the CS 373 Homework Instructions and FAQ.

Every CS 373 homework has the same basic structure. There are six required problems, some with
several subproblems. Each problem is worth 10 points. Only graduate students are required to
answer problem 6; undergraduates can turn in a solution for extra credit. There are several practice
problems at the end. Stars indicate problems we think are hard.

This homework tests your familiarity with the prerequisite material from CS 173, CS 225, and
CS 273, primarily to help you identify gaps in your knowledge. You are responsible for filling
those gaps on your own. Rosen (the 173/273 textbook), CLRS (especially Chapters 1-7, 10,
12, and A—C), and the lecture notes on recurrences should be sufficient review, but you may want
to consult other texts as well.
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Required Problems

1. Sort the following functions from asymptotically smallest to asymptotically largest, indicating
ties if there are any. Please don’t turn in proofs, but you should do them anyway to make
sure you're right (and for practice).

1 n n? Ign nlgn
nlgn (lg n)n (lg n)lgn nlglgn nl/lgn

1000 n lg(IOOO) n lg(nIOOO) (1 + Wlo())n

logipoon  1g
To simplify notation, write f(n) < g(n) to mean f(n) = o(g(n)) and f(n) = g(n) to mean
f(n) = ©(g(n)). For example, the functions n?, n, (;), n® could be sorted either as n <
n*=(y) <n®orasn< () =n*<n’

2. Solve these recurrences. State tight asymptotic bounds for each function in the form O(f(n))
for some recognizable function f(n). Please don’t turn in proofs, but you should do them
anyway just for practice. Assume reasonable but nontrivial base cases, and state them if they
affect your solution. Extra credit will be given for more exact solutions. [Hint: Most of these
are very easy.]

A(n) = 2A(n/2) +n F(n) =9F(|n/3] +9) +n?

B(n) =3B(n/2) +n G(n) =3G(n—1)/5G(n —2)
C(n)=2C(n/3)+n H(n)=2H(v/n) +1
D(n)=2D(n—1) +1 I(n) = 1<r]£1§i%/2 (I(k)+I(n—k)+k)
E(n) = 1<r}€12?>1</2 (E(k) + E(n—k) +n) *J(n) = 1&12;(/2 (J(k)+ J(n— k) + k)

3. Recall that a binary tree is full if every node has either two children (an internal node) or no
children (a leaf). Give at least four different proofs of the following fact:

In any full binary tree, the number of leaves is exactly one more than the number
of internal nodes.

For full credit, each proof must be self-contained, the proof must be substantially different
from each other, and at least one proof must not use induction. For each n, your nth correct
proof is worth n points, so you need four proofs to get full credit. Each correct proof beyond
the fourth earns you extra credit. [Hint: I know of at least six different proofs.]
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4. Most of you are probably familiar with the story behind the Tower of Hanoi puzzle:!

At the great temple of Benares, there is a brass plate on which three vertical diamond
shafts are fixed. On the shafts are mounted n golden disks of decreasing size.? At the time
of creation, the god Brahma placed all of the disks on one pin, in order of size with the
largest at the bottom. The Hindu priests unceasingly transfer the disks from peg to peg,
one at a time, never placing a larger disk on a smaller one. When all of the disks have been
transferred to the last pin, the universe will end.

Recently the temple at Benares was relocated to southern California, where the monks are
considerably more laid back about their job. At the “Towers of Hollywood”, the golden disks
were replaced with painted plywood, and the diamond shafts were replaced with Plexiglas.
More importantly, the restriction on the order of the disks was relaxed. While the disks are
being moved, the bottom disk on any pin must be the largest disk on that pin, but disks
further up in the stack can be in any order. However, after all the disks have been moved,
they must be in sorted order again.

N = = |

[ 1L 1L ]

= I |l =1 | =V |
=L | =4 || =

The Towers of Hollywood.

Describe an algorithm?® that moves a stack of n disks from one pin to the another using the
smallest possible number of moves. For full credit, your algorithm should be non-recursive,
but a recursive algorithm is worth significant partial credit. Ezactly how many moves does
your algorithm perform? [Hint: The Hollywood monks can bring about the end of the universe
quite a bit faster than the original monks at Benares could.]

The problem of computing the minimum number of moves was posed in the most recent issue
of the American Mathematical Monthly (August/September 2002). No solution has been
published yet.

!The puzzle and the accompanying story were both invented by the French mathematician Eduoard Lucas in 1883.
See http://www.cs.wm.edu/ pkstoc/toh.html

2In the original legend, n = 64. In the 1883 wooden puzzle, n = 8.

3Since you’ve read the Homework Instructions, you know exactly what this phrase means.
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5. On their long journey from Denmark to England, Rosencrantz and Guildenstern amuse them-
selves by playing the following game with a fair coin. First Rosencrantz flips the coin over
and over until it comes up tails. Then Guildenstern flips the coin over and over until he gets
as many heads in a row as Rosencrantz got on his turn. Here are three typical games:

Rosencrantz: HH T
Guildenstern: H T HH

Rosencrantz: T
Guildenstern: (no flips)

Rosencrantzz: HHH T
Guildenstern: THHTHHTHTHHH

(a) What is the expected number of flips in one of Rosencrantz’s turns?

(b) Suppose Rosencrantz flips k£ heads in a row on his turn. What is the expected number
of flips in Guildenstern’s next turn?

(c) What is the expected total number of flips (by both Rosencrantz and Guildenstern) in
a single game?

Prove your answers are correct. If you have to appeal to “intuition” or “common sense”, your
answer is almost certainly wrong! You must give exact answers for full credit, but asymptotic
bounds are worth significant partial credit.

6. [This problem is required only for graduate students (including I2CS students); undergrads
can submit a solution for extra credit.]

Tatami are rectangular mats used to tile floors in traditional Japanese houses. Exact dimen-
sions of tatami mats vary from one region of Japan to the next, but they are always twice as
long in one dimension than in the other. (In Tokyo, the standard size is 180cmx90cm.)

(a) How many different ways are there to tile a 2 x n rectangular room with 1 x 2 tatami
mats? Set up a recurrence and derive an ezact closed-form solution. [Hint: The answer
involves a familiar recursive sequence.]

(b) According to tradition, tatami mats are always arranged so that four corners never meet.
Thus, the first two arrangements below are traditional, but not the third.

P

Two traditional tatami arrangements and one non-traditional arrangement.

How many different traditional ways are there to tile a 3 X n rectangular room with 1 x 2
tatami mats? Set up a recurrence and derive an ezxact closed-form solution.

*(c) [ points extra credit] How many different traditional ways are there to tile an n x n
square with 1 x 2 tatami mats? Prove your answer is correct.
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Practice Problems

These problems are only for your benefit; other problems can be found in previous semesters’
homeworks on the course web site. You are strongly encouraged to do some of these problems as
additional practice. Think of them as potential exam questions (hint, hint). Feel free to ask about
any of these questions on the course newsgroup, during office hours, or during review sessions.

1. Removing any edge from a binary tree with n nodes partitions it into two smaller binary
trees. If both trees have at least [(n — 1)/3] nodes, we say that the partition is balanced.

(a) Prove that every binary tree with more than one vertex has a balanced partition. [Hint:
I know of at least two different proofs.]

(b) If each smaller tree has more than |n/3] nodes, we say that the partition is strictly
balanced. Show that for every n, there is an n-node binary tree with no strictly balanced
partition.

2. Describe an algorithm COUNTTOTENTOTHE(n) that prints the integers from 1 to 10™.

Assume you have a subroutine PRINTDIGIT(d) that prints any integer d between 0 and 9,
and another subroutine PRINTSPACE that prints a space character. Both subroutines run in
O(1) time. You may want to write (and analyze) a separate subroutine PRINTINTEGER to
print an arbitrary integer.

Since integer variables cannot store arbitrarily large values in most programming lan-
guages, your algorithm must not store any value larger than max{10,n} in any single integer
variable. Thus, the following algorithm is not correct:

BoGcusCoUNTTOTENTOTHE(n):
for i «— 1 to POWER(10,n)
PRINTINTEGER(%)

(So what exactly can you pass to PRINTINTEGER?)

What is the running time of your algorithm (as a function of n)? How many digits and
spaces does it print? How much space does it use?

3. I'm sure you remember the following simple rules for taking derivatives:

e Simple cases: %a = 0 for any constant «, and d%x =1

Linearity: %(f(z) +g(x) = f'(z) + ¢ (2)
e The product rule: %(f(w) cg(x)) = f'(z) - g(x) + f(z) - ¢'(2)
e The chain rule: 4 (f(9(x)) = f/(9(z)) - ¢'(x)
Using only these rules and induction, prove that %xc = cx¢! for any integer ¢ # —1. Do

not use limits, integrals, or any other concepts from calculus, except for the simple identities
listed above. [Hint: Don’t forget about negative values of c!]
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4. This problem asks you to calculate the total resistance between two points in a series-parallel
resistor network. Don’t worry if you haven’t taken a circuits class; everything you need to
know can be summed up in two sentences and a picture.

e The total resistance of two resistors in series is the sum of their individual resistances.

e The total resistance of two resistors in parallel is the reciprocal of the sum of the recip-
rocals of their individual resistances.

Equivalence laws for series-parallel resistor networks.

What is the ezact total resistance? of the following resistor networks as a function of n? Prove
your answers are correct. [Hint: Use induction. Duh.]

(a) A complete binary tree with depth n, with a 12 resistor at every node, and a common
wire joining all the leaves. Resistance is measured between the root and the leaves.

A balanced binary resistor tree with depth 3.

(b) A totally unbalanced full binary tree with depth n (every internal node has two children,
one of which is a leaf) with a 1) resistor at every node, and a common wire joining all
the leaves. Resistance is measured between the root and the leaves.

A totally unbalanced binary resistor tree with depth 4.

*(c) A ladder with n rungs, with a 19 resistor on every edge. Resistance is measured between
the bottom of the legs.

A resistor ladder with 5 rungs.

1The ISO standard unit of resistance is the Ohm, written with the symbol €. Don’t confuse this with the
asymptotic notation Q(f(n))!



CS 373: Combinatorial Algorithms, Fall 2002
Homework 1, due September 17, 2002 at 23:59:59

Name:

Net ID: Alias:

Name:

Net ID: Alias:

Name:

Net ID: Alias:
Undergrads Grads

This homework is to be submitted in groups of up to three people. Graduate and undergraduate
students are not allowed to work in the same group. Please indicate above whether you are
undergraduate or graduate students. Only one submission per group will be accepted.

Required Problems

1. The traditional Devonian/Cornish drinking song “The Barley Mow” has the following pseu-
dolyrics, where container[i] is the name of a container ! that holds 2 ounces of beer.

BARLEYMow(n):
“Here's a health to the barley-mow, my brave boys,”
“Here's a health to the barley-mow!”

“We’'ll drink it out of the jolly brown bowl,”

“Here's a health to the barley-mow!”

“Here's a health to the barley-mow, my brave boys,”
“Here's a health to the barley-mow!”

fori+ 1ton

“We'll drink it out of the container[i], boys,”

“Here's a health to the barley-mow!”

for j < ¢ downto 1
“The container(j]

“And the jolly brown bowl!”

“Here's a health to the barley-mow, my brave boys,”

“Here's a health to the barley-mow!”

”
’

(a) Suppose each container name container|t] is a single word, and you can sing four words a
second. How long would it take you to sing BARLEYMoOw(n)? (Give a tight asymptotic
bound.)

1One version of the song uses the following containers: nipperkin, gill pot, half-pint, pint, quart, pottle, gallon,
half-anker, anker, firkin, half-barrel, barrel, hogshead, pipe, well, river, and ocean. Every container in this list is
twice as big as its predecessor, except that a firkin is actually 2.25 ankers, and the last three units are just silly.
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(b) Suppose container[n| has ©(logn) syllables, and you can sing six syllables per second.
Now how long would it take you to sing BARLEYMoOw(n)? (Give a tight asymptotic
bound.)

(c) Suppose each time you mention the name of a container, you drink the corresponding
amount of beer: one ounce for the jolly brown bowl, and 2¢ ounces for each container][s).
Assuming for purposes of this problem that you are over 21, exactly how many ounces
of beer would you drink if you sang BARLEYMoOwW(n)? (Give an ezact answer, not just
an asymptotic bound.)

2. Suppose you have a set S of n numbers. Given two elements you cannot determine which
is larger. However, you are given an oracle that will tell you the median of a set of three
elements.

(a) Give a linear time algorithm to find the pair of the largest and smallest numbers in S.

(b) Give an algorithm to sort S in O(nlgn) time.

3. Given a black and white pixel image A[1...m][1...n], our task is to represent A with a search
tree T. Given a query (z,y), a simple search on 7' should return the color of pixel A[z]|[y].
The algorithm to construct 7" will be as follows.

CONSTRUCTSEARCHTREE(A[1...m][1...n]):
//Base Case
if A contains only one color
return a leaf node labeled with that color

//Recurse on Subtrees

(2,7) < CHOOSECUT(A[Ll...m][1...n])

Ty < CONSTRUCTSEARCHTREE(A[1...4][1...7])

Ty < CONSTRUCTSEARCHTREE(A[L...¢][j +1...n])

T3 < CONSTRUCTSEARCHTREE(A[i + 1...mJ[1...]])

Ty + CONSTRUCTSEARCHTREE(A[i +1...m|[j+1...n])

//Construct the Root
T.cut < (i,7)

T.children < Tl, T2, T3, Ty
return T'

That is, this algorithm divides a multicolor image into quadrants and recursively constructs
the search tree for each quadrant. Upon a query (z,y) of T' (assuming 1 < z < m and
1 <y < n), the appropriate subtree is searched. When the correct leaf node is reached, the
pixel color is returned. Here’s a toy example.

2
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© 0 N 0~ W|IN P

=
o

(a)

(a) An image A and the chosen cuts. (b) The corresponding search tree.

Your job in this problem is to give an algorithm for CHOOSECUT. The sequence of chosen
cuts must result in an optimal search tree T'. That is, the expected search depth of a uniformly
chosen pixel must be minimized. You may use any external data structures (i.e.a global table)
that you find necessary. You may also preprocess in order to initialize these structures before
the initial call to CONSTRUCTSEARCHTREE(A[L...m|[1...n]).

4. Let A be a set of n positive integers, all of which are no greater than some constant M > 0.
Give an O(n?M) time algorithm to determine whether or not it is possible to split A into two
subsets such that the sum of the numbers in each subset are equal.

5. Let S and T be two binary trees. A matching of S and T is a tree M which is isomorphic to
some subtree in each of S and T'. Here’s an illustration.

S T M(ST)

A matching M (S, T) of binary trees S and T

A mazximal matching is a matching which contains at least as many vertices as any other
matching. Give an algorithm to compute a maximal matching given the roots of two binary
trees. Your algorithm should return the size of the match as well as the two roots of the
matched subtrees of S and T
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6. [This problem is required only for graduate students (including I2CS students); undergrads
can submit a solution for extra credit.]

Let P[1,...,n] be a set of n convezr points in the plane. Intuitively, if a rubber band were
stretched to surround P then each point would touch the rubber band. Furthermore, suppose
that the points are labeled such that P[1],..., P[n] is a simple path along the convex hull
(i.e.P[i] is adjacent to P[i + 1] along the rubber band).

(a) Give a simple algorithm to compute a shortest cyclic tour of P.

(b) A monotonic tour of P is a tour that never crosses itself. Here’s an illustration.

P[2] P[2]

Pl4]

Pl6) Pl
PI7]
(b)

(a) A monotonic tour of P. (b) A non-monotonic tour of P.

Prove that any shortest tour of P must be monotonic.

(c) Given an algorithm to compute a shortest tour of P starting at point P[1] and finishing
on point P[| 5 [].
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Practice Problems

These remaining practice problems are entirely for your benefit. Don’t turn in solutions—we’ll
just throw them out—but feel free to ask us about these questions during office hours and review
sessions. Think of these as potential exam questions (hint, hint).

1. Suppose that you are given an n x n checkerboard and a checker. You must move the checker
from the bottom edge of the board to the top edge of the board according to the following
rule. At each step you may move the checker to one of three squares:

(a) the square immediately above,

(b) the square that is one up and one left (but only if the checker is not already in the
leftmost column),

(c) the square that is one up and one right (but only if the checker is not already in the
rightmost column).

Each time you move from square x to square y, you receive p(x,y) dollars. You are given
p(z,y) for all pairs (x,y) for which a move from z to y is legal. Do not assume that p(z,y) is
positive.

Give an algorithm that figures out the set of moves that will move the checker from somewhere
along the bottom edge to somewhere along the top edge while gathering as many dollars as
possible. Your algorithm is free to pick any square along the bottom edge as a starting point
and any square along the top edge as a destination in order to maximize the number of dollars
gathered along the way. What is the running time of your algorithm?

2. (CLRS 15-1) The euclidean traveling-salesman problem is the problem of determining the
shortest closed tour that connects a given set of n points in the plane. Figure (a) below shows
the solution to a 7-point problem. The general problem is NP-complete, and its solution is
therefore believed to require more than polynomial time.

J.L. Bentley has suggested that we simplify the problem by restricting our attention to bitonic
tours (Figure (b) below). That is, tours that start at the leftmost point, go strictly left to
right to the rightmost point, and then go strictly right to left back to the starting point. In
this case, a polynomial-time algorithm is possible.

4?\;;\\\.//\ *\\\ /.//\
/ L ,./} \\ R }
= -

@ (b)

Seven points in the plane, shown on a unit grid. (a) The shortest closed tour, with length approximately 24.89.
This tour is not bitonic. (b) The shortest bitonic tour for the same set of points. It’s length is approximately 25.58.
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Describe an O(n?)-time algorithm for determining an optimal bitonic tour. You may assume
that no two points have the same z-coordinate. [Hint: Scan left to right, maintaining optimal
possibilities for the two parts of the tour.]

3. You are given a polygonal line v made out of n vertices in the plane. Namely, you are given a
list of n points in the plane p1, ..., pn, where p; = (z;,¥;). You need to display this polygonal
line on the screen, however, you realize that you might be able to draw a polygonal line with
considerably less vertices that looks identical on the screen (because of the limited resolution
of the screen). It is crucial for you to minimize the number of vertices of the polygonal line.
(Because, for example, your display is a remote Java applet running on the user computer,
and for each vertex of the polygon you decide to draw, you need to send the coordinates of
the points through the network which takes a long long long time. So the fewer vertices you
send, the snappier your applet would be.)

So, given such a polygonal line -, and a parameter k, you would like to select k vertices of y
that yield the “best” polygonal line that looks like 7.

14

@ (b) ©
(a) The original polygonal line with 14 vertices. (b) A new polygonal line with 6 vertices. (c) The distance
between ps on the original polygonal line and the simplification segment pape. The error of ps is
error(ps) = dist(ps, pape)-

Namely, you need to build a new polygonal line 4/ and minimize the difference between the
two polygonal-lines. The polygonal line ' is built by selecting k vertices {pi, , Dis, ---, i, } from
. It is required that 41 = 1, ¢y = n, and i; < ¢j4q for j =1,2,...,k = 1.

We define the error between v and «' by how far from +/ are the vertices of yv. More formally,

The difference between the two polygonal lines is

k-1 ij41—1

eTTOT(’Y, Fyl) = Z Z diSt(pm7pijpi]'+1)-

Namely, for every vertex not in the simplification, its associated error, is the distance to the
corresponding simplified segment (see (c) in above figure). The overall error is the sum over
all vertices.

You can assume that you are provided with a subroutine that can calculate dist(u,vw) in
constant time, where dist(u,vw) is the distance between the point v and the segment vw.

Give an O(n?) time algorithm to find the 4/ that minimizes error(y,v').
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Homework 2 (due Thursday, September 26, 2002 at 11:59:59 p.m.)

Name:
Net ID: Alias: UG

Name:

Net ID: Alias: UG

Name:
Net ID: Alias: UG

Homeworks may be done in teams of up to three people. Each team turns in just one solution,
and every member of a team gets the same grade. Since graduate students are required to solve
problems that are worth extra credit for other students, Grad students may not be on the
same team as undergraduates.

Neatly print your name(s), NetID(s), and the alias(es) you used for Homework 0 in the boxes above.
Please also tell us whether you are an undergraduate or 1-unit grad student by circling U or G,
respectively. Staple this sheet to the top of your homework. NOTE: You must use different
sheet(s) of paper for each problem assigned.

Required Problems

1. For each of the following problems, the input is a set of n nuts and n bolts. For each bolt,
there is exactly one nut of the same size. Direct comparisons between nuts or between bolts
are not allowed, but you can compare a nut and a bolt in constant time.

(a) Describe and analyze a deterministic algorithm to find the largest bolt. Ezactly how
many comparisons does your algorithm perform in the worst case? [Hint: This is very
easy.|

(b) Describe and analyze a randomized algorithm to find the largest bolt. What is the ezact
expected number of comparisons performed by your algorithm?

(c) Describe and analyze an algorithm to find the largest and smallest bolts. Your algo-
rithm can be either deterministic or randomized. What is the ezact worst-case expected
number of comparisons performed by your algorithm? [Hint: Running part (a) twice is
definitely not the most efficient algorithm.]

In each case, to receive full credit, you need to describe the most efficient algorithm
possible.
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2. Consider the following algorithm:

SLOWSHUFFLE(A[1..n]) :

fori+ 1ton
Bli] «Null

fori < 1ton
index + Random(1,n)
while Blindex] # Null

index + Random(1,n)

Blindex] + A[i]

fori+ 1ton
Ali] < BJi]

Suppose that Random(4,7) will return a random number between ¢ and j inclusive in con-
stant time. SLOWSHUFFLE will shuffle the input array into a random order such that every
permutation is equally likely.

(a) What is the expected running time of the above algorithm. Justify your answer and give
a tight asymptotic bound.

(b) Describe an algorithm that randomly shuffles an n-element array, so that every permu-
tation is equally likely, in O(n) time.

3. Suppose we are given an undirected graph G = (V, E) together with two distinguished vertices
s and t. An s-t min-cut is a set of edges that once removed from the graph, will disconnect
s from t. We want to find such a set with the minimum cardinality(The smallest number of
edges). In other words, we want to find the smallest set of edges that will seperate s and ¢

To do this we repeat the following step |V| — 2 times: Uniformly at random, pick an edge
from the set E which contains all edges in the graph excluding those that directly connects
vertices s and t. Merge the two vertices that is connected by this randomly selected edge.
If as a result there are several edges between some pair of vertices, retain them all. Edges
that are between the two merged vertices are removed so that there are never any self-loops.
We refer to this process of merging the two end-points of an edge into a single vertex as the
contraction of that edge. Notice with each contraction the number of vertices of G decreases
by one.

As this algorithm proceeds, the vertex s may get merged with a new vertex as the result
of an edge being contracted. We call this vertex the s-vertex. Similarly, we have a t-vertex.
During the contraction algorithm, we ensure that we never contract an edge between the
s-vertex and the t-vertex.
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edge (S,B)

G\ a Contraction of

1 7 Contraction of
s.B \@/ ) “edgeCTA) ~  (SB) (rAC

(a) Give an example of a graph in which the probability that this algorithm finds an s-t
min-cut is exponentially small(O(1/a™)). Justify your answers.
( Hint: Think multigraphs)

(b) Give an example of a graph such that there are O(2") number of s-t min-cuts. Justify
your answers.

4. Describe a modification of treaps that supports the following operations, each in O(logn)
expected time:
o INSERT(z): Insert a new element z into the data structure.
e DELETE(z): Delete an element x from the data structure.

e COMPUTERANK(z): Return the number of elements in the data structure less than or
equal to x.

o FINDBYRANK(r): Return the kth smallest element in the data structure.

Describe and analyze the algorithms that implement each of these operations. [Hint: Don’t
reinvent the wheel!]
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5. A meldable priority queue stores a set of keys from some totally ordered universe (such as the
integers) and supports the following operations:

¢ MAKEQUEUE: Return a new priority queue storing the empty set.
e FINDMIN(Q): Return the smallest element stored in @ (if any).

e DELETEMIN(Q): Delete the smallest element stored in @ (if any).
o INSERT(Q, x): Insert element x into Q.

e MELD(Q1,Q2): Return a new priority queue containing all the elements stored in
and Q2. The component priority queues are destroyed.

o DECREASEKEY(Q, z,y): Replace an element z of @ with a smaller key y. (If y > z, the
operation fails.) The input is a pointer directly to the node in @ storing z.

e DELETE(Q, z): Delete an element z € Q. The input is a pointer directly to the node in
Q storing x.

A simple way to implement this data structure is to use a heap-ordered binary tree, where
each node stores an element, a pointer to its left child, a pointer to its right child, and a
pointer to its parent. MELD(Q1,Q2) can be implemented with the following randomized
algorithm.

e If either one of the queues is empty, return the other one.

e If the root of ()1 is smaller than the root of QJ2, then recursively MELD Q2 with either
right(Q1) or left(Q1), each with probability 1/2.

e Similarly, if the root of Q)2 is smaller than the root of @)1, then recursively MELD Q3
with a randomly chosen child of Q.

(a) Prove that for any heap-ordered trees Q1 and @2, the expected running time of MELD(Q1, Q2)
is O(log n), where n = |Q1|+|Q2|. [Hint: How long is a random path in an n-node binary
tree, if each left/right choice is made with equal probability?] For extra credit, prove
that the running time is O(logn) with high probability.

(b) Show that each of the operations DELETEMIN, INSERT, DECREASEKEY, and DELETE
can be implemented with one call to MELD and O(1) additional time. (This implies that
every operation takes O(logn) with high probability.)

6. [This problem is required only for graduate students taking CS 873 for a full unit; anyone else
can submit a solution for extra credit.]

The following randomized algorithm selects the rth smallest element in an unsorted array
A[l,..,n]. For example, to find the smallest element, you would call RANDOMSELECT(A4, 1);
to find the median element, you would call RANDOMSELECT(A, [n/2]). Recall from lecture
that PARTITION splits the array into three parts by comparing the pivot element A[p] to every
other element of the array, using n — 1 comparisons altogether, and returns the new index of
the pivot element.
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RANDOMSELECT(A[l..n],7) :
p < RAaNDOM(1,n)
k < PARTITION(A[1..n],p)

ifr<k

return RANDOMSELECT(A[1..k — 1],7)
elseif r > k

return RANDOMSELECT(A[k + 1..n],7 — k)
else

return A[k]

(a) State a recurrence for the expected running time of RANDOMSELECT, as a function of
both n and 7.

(b) What is the ezact probability that RANDOMSELECT compares the ith smallest and jth
smallest elements in the input array? The correct answer is a simple function of i, 7,
and r. [Hint: Check your answer by trying a few small examples.]

(c) Show that for any n and r, the expected running time of RANDOMSELECT is ©(n). You
can use either the recurrence from part (a) or the probabilities from part (b). For extra
credit, find the ezact expected number of comparisons, as a function of n and r.

(d) What is the expected number of times that RANDOMSELECT calls itself recursively?
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Practice Problems

1. Death knocks on your door one cold blustery morning and challenges you to a game. Death
knows that you are an algorithms student, so instead of the traditional game of chess, Death
presents you with a complete binary tree with 4" leaves, each colored either black or white.
There is a token at the root of the tree. To play the game, you and Death will take turns
moving the token from its current node to one of its children. The game will end after 2n
moves, when the token lands on a leaf. If the final leaf is black, you die; if it’s white, you will
live forever. You move first, so Death gets the last turn.

You can decide whether it’s worth playing or not as follows. Imagine that the nodes at even
levels (where it’s your turn) are OR gates, the nodes at odd levels (where it’s Death’s turn)
are and gates. Each gate gets its input from its children and passes its output to its parent.
White and black stand for TRUE and FALSE. If the output at the top of the tree is TRUE,
then you can win and live forever! If the output at the top of the tree is FALSE, you should
challenge Death to a game of Twister instead.

(a) Describe and analyze a deterministic algorithm to determine whether or not you can
win. [Hint: This is easy!]

(b) Unfortunately, Death won’t let you even look at every node in the tree. Describe a
randomized algorithm that determines whether you can win in ©(3") expected time.
[Hint: Consider the case n =1.]

O
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2. WHat is the ezact number of nodes in a skip list storing n keys, not counting the sentinel
nodes at the beginning and end of each level? Justify your answer.

3. Suppose we are given two sorted arrays A[l..n] and B[1l..n| and an integer k. Describe an
algorithm to find the kth smallest element in the union of A and B. (For example, if k =1,
your algorithm should return the smallest element of A U B; if £ = n, our algorithm should
return the median of AU B.) You can assume that the arrays contain no duplicates. Your
algorithm should be able to run in O(logn) time. [Hint: First try to solve the special case

k=mn.]
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Homework 3, due October 17, 2002 at 23:59:59

Name:

Net ID: Alias:

Name:

Net ID: Alias:

Name:

Net ID: Alias:
Undergrads Grads

This homework is to be submitted in groups of up to three people. Graduate and undergraduate
students are not allowed to work in the same group. Please indicate above whether you are
undergraduate or graduate students. Only one submission per group will be accepted.

Required Problems

1. (a) Prove that only one subtree gets rebalanced in a scapegoat tree insertion.

(b) Prove that I(v) = 0 in every node of a perfectly balanced tree. (Recall that I(v) =
max{0, |T'| — |s| — 1}, where T is the child of greater height and s the child of lesser
height, and |v| is the number of nodes in subtree v. A perfectly balanced tree has two
perfectly balanced subtrees, each with as close to half the nodes as possible.)

*(c) Show that you can rebuild a fully balanced binary tree from an unbalanced tree in O(n)
time using only O(logn) additional memory.

2. Suppose we can insert or delete an element into a hash table in constant time. In order to
ensure that our hash table is always big enough, without wasting a lot of memory, we will
use the following global rebuilding rules:

e After an insertion, if the table is more than 3/4 full, we allocate a new table twice as big
as our current table, insert everything into the new table, and then free the old table.

e After a deletion, if the table is less than 1/4 full, we we allocate a new table half as big
as our current table, insert everything into the new table, and then free the old table.

Show that for any sequence of insertions and deletions, the amortized time per operation is
still a constant. Do not use the potential method (it makes it much more difficult).

3. A stack is a FILO/LIFO data structure that represents a stack of objects; access is only
allowed at the top of the stack. In particular, a stack implements two operations:

e PUSH(z): adds z to the top of the stack.
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e POP: removes the top element and returns it.

A queue is a FIFO/LILO data structure that represents a row of objects; elements are added
to the front and removed from the back. In particular, a queue implements two operations:

o ENQUEUE(z): adds z to the front of the queue.

e DEQUEUE: removes the element at the back of the queue and returns it.

Using two stacks and no more than O(1) additional space, show how to simulate a queue for
which the operations ENQUEUE and DEQUEUE run in constant amortized time. You should
treat each stack as a black box (i.e., you may call PUSH and PoP, but you do not have access
to the underlying stack implementation). Note that each PusH and PoP performed by a
stack takes O(1) time.

4. A data structure is insertion-disabled if there is no way to add elements to it. For the purposes
of this problem, further assume that an insertion-disabled data structure implements the
following operations with the given running times:

e INITIALIZE(S): Return an insertion-disabled data structure that contains the elements
of S. Running time: O(nlogn).

e SEARCH(D,z): Return TRUE if z is in D; return FALSE if not. Running time:
O(logn).

e RETURNALL(D, z): Return an unordered set of all elements in D. Running time: O(n).
e DELETE(D, z): Remove z from D if z is in D. Running time: O(logn).

Using an approach known as the Bentley-Saxe Logarithmic Method (BSLM), it is possible to
represent a dynamic (i.e., supports insertions) data structure with a collection of insertion-
disabled data structures, where each insertion-disabled data structure stores a number of
elements that is a distinct power of two. For example, to store 39 = 20+ 21 4+ 22 4 25 elements
in a BSLM data structure, we use four insertion-disabled data structures with 20, 21, 22, and
25 elements.

To find an element in a BSLM data structure, we search the collection of insertion-disabled
data structures until we find (or don’t find) the element.

To insert an element into a BSLM data structure, we think about adding a 2°-size insertion-
disabled data structure. However, an insertion-disabled data structure with 2° elements may
already exist. In this case, we can combine two 20-size structures into a single 2'-size structure.
However, there may already be a 2l-size structure, so we will need to repeat this process. In
general, we do the following: Find the smallest ¢ such that for all nonnegative k < %, there is
a 2F-sized structure in our collection. Create a 2i-sized structure that contains the element to
be inserted and all elements from 2*-sized data structures for all k < i. Destroy all 2-sized
data structures for k < 1.
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Before insertion: 39 elements total

»H After insertion: 40 elements total

Inserting an element into a BSLM data structure.

We delete elements from the BSLM data structure lazily. To delete an element, we first
search the collection of insertion-disabled data structures for it. Then we call DELETE to
remove the element from its insertion-disabled data structure. This means that a 2i-sized
insertion-disabled data structure might store less than 2! elements. That’s okay; we just
say that it stores 2' elements and say that 2° is its pretend size. We keep track of a single
variable, called Waste, which is initially 0 and is incremented by 1 on each deletion. If Waste
exceeds three-quarters of the total pretend size of all insertion-disabled data structures in our
collection (i.e., the total number of elements stored), we rebuild our collection of insertion-
disabled data structures. In particular, we create a 2™-sized insertion-disabled data structure,
where 2™ is the smallest power that is greater than or equal to the total number of elements
stored. All elements are stored in this 2™-sized insertion-disabled data structure, and all
other insertion-disabled data structures in our collection are destroyed. Waste is reset to
2™ — n, where n is the total number of elements stored in the BSLM data structure.

Your job is to prove the running times of the following three BSLM operations:

e SEARCHBSLM(D, z): Search for z in the collection of insertion-disabled data structures
that represent the BSLM data structure D. Running time: O(log?n) worst-case.

e INSERTBSLM(D, z): Insert x into the collection of insertion-disabled data structures
that represent the BSLM data structure D, modifying the collection as necessary. Run-
ning time: O(log®n) amortized.

e DELETEBSLM(D, z): Delete = from the collection of insertion-disabled data structures
that represent the BSLM data structure D, rebuilding when there is a lot of wasted
space. Running time: O(log®n) amortized.

5. Except as noted, the following sub-problems refer to a Union-Find data structure that uses
both path compression and union by rank.

(a) Prove that in a set of n elements, a sequence of n consecutive FIND operations takes
O(n) total time.

(b) Show that any sequence of m MAKESET, FIND, and UNION operations takes only O(m)
time if all of the UNION operations occur before any of the FIND operations.

3



CS 373 Homework 3 (due 10/17/02) Fall 2002

(c) Now consider part b with a Union-Find data structure that uses path compression but
does not use union by rank. Is O(m) time still correct? Prove your answer.

6. [This problem is required only for graduate students (including I2CS students); undergrads
can submit a solution for extra credit.]

Suppose instead of powers of two, we represent integers as the sum of Fibonacci numbers.
In other words, instead of an array of bits, we keep an array of ‘fits’, where the ith least
significant fit indicates whether the sum includes the ith Fibonacci number F;. For example,
the fit string 101110 represents the number Fg + Fy + F3+ F» =8+ 3+ 241 = 14. Describe
algorithms to increment and decrement a fit string in constant amortized time. [Hint: Most
numbers can be represented by more than one fit string.
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Practice Problems

These remaining practice problems are entirely for your benefit. Don’t turn in solutions—we’ll
just throw them out—but feel free to ask us about these questions during office hours and review
sessions. Think of these as potential exam questions (hint, hint).

1. A multistack consists of an infinite series of stacks Sg, S1, 59, ..., where the ith stack S; can
hold up to 3¢ elements. Whenever a user attempts to push an element onto any full stack .S;,
we first move all the elements in S; to stack S;;1 to make room. But if S;; is already full,
we first move all its members to S;12, and so on. Moving a single element from one stack to
the next takes O(1) time.

@

x3

> >
N | et | I

Making room for one new element in a multistack.

(a) In the worst case, how long does it take to push one more element onto a multistack
containing n elements?

(b) Prove that the amortized cost of a push operation is O(logn), where n is the maximum
number of elements in the multistack. You can use any method you like.

2. A hash table of size m is used to store n items with n < m/2. Open addressing is used for
collision resolution.

(a) Assuming uniform hashing, show that for 4 = 1,2,...,n, the probability that the 7*?
insertion requires strictly more than k probes is at most 27%.

(b) Show that for i = 1,2,...,n, the probability that the i** insertion requires more than
21gn probes is at most 1/n2.

Let the random variable X; denote the number of probes required by the i** insertion.
You have shown in part (b) that Pr{X; > 2Ign} < 1/n?. Let the random variable X =
maxi<i<n X; denote the maximum number of probes required by any of the n insertions.

(c) Show that Pr{X > 2Ign} < 1/n.

(d) Show that the expected length of the longest probe sequence is E[X]| = O(lgn).
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3. A sequence of n operations is performed on a data structure. The ith operation costs 7 if 7 is
an exact power of 2, and 1 otherwise. That is operation i costs f(i), where:

. . k
N e, =27
fi) = { 1, otherwise
Determine the amortized cost per operation using the following methods of analysis:

(a) Aggregate method
(b) Accounting method
*(c) Potential method
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Name:

Net ID: Alias:

Name:

Net ID: Alias:

Name:

Net ID: Alias:
Undergrads Grads

This homework is to be submitted in groups of up to three people. Graduate and undergraduate
students are not allowed to work in the same group. Please indicate above whether you are
undergraduate or graduate students. Only one submission per group will be accepted.

Required Problems

1. Tournament:
A tournament is a directed graph with exactly one edge between every pair of vertices.
(Think of the nodes as players in a round-robin tournament, where each edge points from
the winner to the loser.) A Hamailtonian path is a sequence of directed edges, joined end to
end, that visits every vertex exactly once.

Prove that every tournament contains at least one Hamiltonian path.

A six-vertex tournament containing the Hamiltonian path 6 -4 —+5 —»2 — 3 — 1.

2. Acrophobia:
Consider a graph G = (V, E) whose nodes are cities, and whose edges are roads connecting the
cities. For each edge, the weight is assigned by h., the maximum altitude encountered when
traversing the specified road. Between two cities s and ¢, we are interested in those paths
whose maximum altitude is as low as possible. We will call a subgraph, G’, of G an acrophobic
friendly subgraph, if for any two nodes s and ¢ the path of minimum altitude is always
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included in the subgraph. For simplicity, assume that the maximum altitude encountered on
each road is unique.

(a) Prove that every graph of n nodes has an acrophobic friendly subgraph that has only
n — 1 edges.

(b) Construct an algorithm to find an acrophobic friendly subgraph given a graph G =
(V, E).

3. Refer to the lecture notes on single-source shortest paths. The GENERICSSSP algorithm
described in class can be implemented using a stack for the ‘bag’. Prove that the resulting
algorithm, given a graph with n nodes as input, could perform 2(2") relaxation steps before
stopping. You need to describe, for any positive integer n, a specific weighted directed n-
vertex graph that forces this exponential behavior. The easiest way to describe such a family
of graphs is using an algorithm!

4. Neighbors:
Two spanning trees T and 7" are defined as meighbors if T' can be obtained from T by
swapping a single edge. More formally, there are two edges e and f such that 7" is obtained
from T by adding edge ¢ and deleting edge f.

(a) Let T' denote the minimum cost spanning tree and suppose that we want to find the
second cheapest tree 7' among all trees. Assuming unique costs for all edges, prove that
T and T" are neighbors.

(b) Given a graph G = (V, E), construct an algorithm to find the second cheapest tree, T".

(c) Consider a graph, H, whose vertices are the spanning trees of the graph G. T'wo vertices
are connected by an edge if and only if they are neighbors as previously defined. Prove
that for any graph G this new graph H is connected.

5. Network Throughput:

Suppose you are given a graph of a (tremendously simplified) computer network G = (V, E)
such that a weight, b., is assigned to each edge representing the communication bandwidth
of the specified channel in Kb/s and each node is assigned a value, [,, representing the
server latency measured in seconds/packet. Given a fixed packet size, and assuming all edge
bandwidth values are a multiple of the packet size, your job is to build a system to decide
which paths to route traffic between specfied servers.

More formally, a person wants to route traffic from server s to server ¢ along the path of
maximum throughput. Give an algorithm that will allow a network design engineer to choose
an optimal path by which to route data traffic.

2
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6. All-Pairs-Shortest-Path:
[This problem is required only for graduate students taking CS 373 for a full unit,
anyone else can submit a solution for extra credit.]
Given an undirected, unweighted, connected graph G = (V, E), we wish to solve the distance
version of the all-pairs-shortest-path problem. The algorithm APD takes the n x n 0-1
adjacency matrix A and returns an n x n matrix D such that d;; represents the shortest path
between vertices ¢ and j.

APD(A)
Z+— A-A
let B be an n x n matrix, where b;; = 1 iff ¢ # j and (a;; = 1 or z;; > 0)
ifbjj=1foralli#j
return D < 2B — A
T «+ APD(B)
X+«T-A
foreach z;;
if x;; > t;; - degree(j)
dij — 2ty
else
dij < 2t;5 — 1

return D

(a) In the APD algorithm above, what do the matrices Z, B, T, and X represent? Justify
your answers.

(b) Prove that the APD algorithm correctly computes the matrix of shortest path distances.
In other words, prove that in the output matrix D, each entry d;; represents the shortest
path distance between node ¢ and node j.

(c) Suppose we can multiply two n x n matrices in M (n) time, where M(n) = Q(n?).!
Prove that APD runs in O(M (n)logn) time.

!The matrix multiplication algorithm you already know runs in O(n®) time, but this is not the fastest known.
The current record is M(n) = O(n**7®), due to Don Coppersmith and Shmuel Winograd. Determinign the smallest
possible value of M (n) is a long-standing open problem.
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Practice Problems

1. Makefiles:

In order to facilitate recompiling programs from multiple source files when only a small
number of files have been updated, there is a UNIX utility called ‘make’ that only recompiles
those files that were changed after the most recent compilation, and any intermediate files in
the compilation that depend on those that were changed. A Makefile is typically composed
of a list of source files that must be compiled. Each of these source files is dependent on some
of the other files which are listed. Thus a source file must be recompiled if a file on which it
depends is changed.

Assuming you have a list of which files have been recently changed, as well as a list for
each source file of the files on which it depends, design an algorithm to recompile only those
necessary. DO NOT worry about the details of parsing a Makefile.

2. The incidence matrix of an undirected graph G = (V, E) is a |V| x | E| matrix B = (b;;) such
that
{1 if vertex v; is an endpoint of edge e;
ij =

0 otherwise

(a) Describe what all the entries of the matrix product BB represent (B” is the matrix
transpose). Justify.

(b) Describe what all the entries of the matrix product B’ B represent. Justify.

*(c) Let C = BBT —2A. Let C' be C with the first row and column removed. Show that
det C’ is the number of spanning trees. (A is the adjacency matrix of G, with zeroes on
the diagonal).

3. Reliable Network:
Suppose you are given a graph of a computer network G = (V, E) and a function r(u, v) that
gives a reliability value for every edge (u,v) € E such that 0 < r(u,v) < 1. The reliability
value gives the probability that the network connection corresponding to that edge will not
fail. Describe and analyze an algorithm to find the most reliable path from a given source
vertex s to a given target vertex t.

4. Aerophobia:
After graduating you find a job with Aerophobes-R/-Us, the leading traveling agency for
aerophobic people. Your job is to build a system to help customers plan airplane trips from
one city to another. All of your customers are afraid of flying so the trip should be as short
as possible.

In other words, a person wants to fly from city A to city B in the shortest possible time.
S/he turns to the traveling agent who knows all the departure and arrival times of all the
flights on the planet. Give an algorithm that will allow the agent to choose an optimal route
to minimize the total time in transit. Hint: rather than modify Dijkstra’s algorithm, modify
the data. The total transit time is from departure to arrival at the destination, so it will
include layover time (time waiting for a connecting flight).

4
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5. The Seven Bridges of Konigsberg:
During the eighteenth century the city of Konigsberg in East Prussia was divided into four
sections by the Pregel river. Seven bridges connected these regions, as shown below. It was
said that residents spent their Sunday walks trying to find a way to walk about the city so
as to cross each bridge exactly once and then return to their starting point.

?@@T:
B e /i

(a) Show how the residents of the city could accomplish such a walk or prove no such walk
exists.

(b) Given any undirected graph G = (V, E), give an algorithm that finds a cycle in the
graph that visits every edge exactly once, or says that it can’t be done.

6. Given an undirected graph G = (V, E) with costs ¢, > 0 on the edges e € E give an O(|E|)
time algorithm that tests if there is a minimum cost spanning tree that contains the edge e.

7. Combining Boruvka and Prim:
Give an algorithm that find the MST of a graph G in O(mloglogn) time by combining
Boruvka’s and Prim’s algorithm.

8. Minimum Spanning Tree changes:
Suppose you have a graph G and an MST of that graph (i.e. the MST has already been
constructed).

(a) Give an algorithm to update the MST when an edge is added to G.

(b) Give an algorithm to update the MST when an edge is deleted from G.

(c) Give an algorithm to update the MST when a vertex (and possibly edges to it) is added
to G.

9. Nesting Envelopes
You are given an unlimited number of each of n different types of envelopes. The dimensions
of envelope type ¢ are z; X y;. In nesting envelopes inside one another, you can place envelope
A inside envelope B if and only if the dimensions A are strictly smaller than the dimensions
of B. Design and analyze an algorithm to determine the largest number of envelopes that
can be nested inside one another.

10. o(V?) Adjacency Matrix Algorithms

(a) Give an O(V) algorithm to decide whether a directed graph contains a sink in an adja-
cency matrix representation. A sink is a vertex with in-degree V — 1.

5
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11.

12.

13.

14.

15.

(b) An undirected graph is a scorpion if it has a vertex of degree 1 (the sting) connected
to a vertex of degree two (the tail) connected to a vertex of degree V' — 2 (the body)
connected to the other V' — 3 vertices (the feet). Some of the feet may be connected to
other feet.

Design an algorithm that decides whether a given adjacency matrix represents a scorpion
by examining only O(V') of the entries.

(c) Show that it is impossible to decide whether G has at least one edge in O(V') time.

Shortest Cycle:
Given an undirected graph G = (V, E), and a weight function f : £ — R on the edges, give
an algorithm that finds (in time polynomial in V and E) a cycle of smallest weight in G.

Longest Simple Path:

Let graph G = (V,E), |[V| = n . A simple path of G, is a path that does not contain the
same vertex twice. Use dynamic programming to design an algorithm (not polynomial time)
to find a simple path of maximum length in G. Hint: It can be done in O(n°2") time, for
some constant c.

Minimum Spanning Tree:
Suppose all edge weights in a graph G are equal. Give an algorithm to compute an MST.

Transitive reduction:
Give an algorithm to construct a transitive reduction of a directed graph G, i.e. a graph
GTE with the fewest edges (but with the same vertices) such that there is a path from a to

b in G iff there is also such a path in GT%.

0 1 2 3 .4
52295 42347 11737 41127 451

(a) What is mod 67

(b) What is the capital of Nebraska? Hint: It is not Omaha. It is named after a famous
president of the United States that was not George Washington. The distance from the
Earth to the Moon averages roughly 384,000 km.
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http://www-courses.cs.uiuc.edu/"cs373
Homework 5 (due Thur. Nov. 21, 2002 at 11:59 pm)

Name:
Net ID: Alias: U3yl
Name:
Net ID: Alias: U3, 1
Name:
Net ID: Alias: U3, 1

Neatly print your name(s), NetID(s), and the alias(es) you used for Homework 0 in the boxes above.
Please also tell us whether you are an undergraduate, 3/4-unit grad student, or 1-unit grad student
by circling U, 3/, or 1, respectively. Staple this sheet to the top of your homework.

Required Problems

1. (10 points) Given two arrays, A[l..n] and B[l..m| we want to determine whether there is an
i > 0 such that B[1] = A[i + 1|,B[2] = A[i + 2],...,B[m]| = A[i + m]. In other words, we want
to determine if B is a substring of A. Show how to solve this problem in O(nlogn) time with
high probability.

2. (5 points) Let a,b,c € Z*.

(a) Prove that ged(a,bd) - lem(a, b) = ab.
(b) Prove lem(a, b, ¢) = lcm(lem(a, b),c).
(c) Prove gecd(a, b, c)lcm(ab, ac,be) = abe.

3. (5 points) Describe an efficient algorithm to compute multiplicative inverses modulo a prime
p. Does your algorithm work if the modulos is composite?

4. (10 points) Describe an efficient algorithm to compute F,, mod m, given integers n and m as
input.



CS 373 Homework 5 (due 11/21/02) Fall 2002

5. (10 points) Let n have the prime factorization p’fl p’§2 e pft, where the primes p; are distinct
and have exponents k; > 0. Prove that

B(n) = pri_l(pi —-1).

Conclude that ¢(n) can be computed in polynomial time given the prime factorization of n.

6. (10 points) Suppose we want to compute the Fast Fourier Transform of an intger vector
P[0..n—1]. We could choose an integer m larger than any coefficient P[i], and then perform
all arithmetic modulo m (or more formally, in the ring Z,,). In order to make the FFT
algorithm work, we need to find an integer that functions as a ”primitive nth root of unity
modulo m”.

For this problem, let’s assume that m = 2%/2 + 1, where as usual n is a power of two.

(a) Prove that 2" =1 (mod m).

(b) Prove that ZZ;& 2% =0 (mod m). These two conditions imply that 2 is a primitive nth
root of unity in Z,,.

(c) Given (a), (b), and (c), briefly argue that the "FFT modulo m” of P is well-defined and
be computed in O(nlogn) arithmetic operations.

(d) Prove that n has a multiplicative inverse in Z,,. [Hint: n is a power of 2, and m is odd.]
We need this property to implement the inverse FF'T modulo m.

(e) What is the FFT of the sequence [3,1,3,3,7,3,7,3] modulo 17?7

7. (10 points) [This problem is required only for graduate students taking CS 373 for a full unit;
anyone else can submit a solution for extra credit.]

(a) Prove that for any integer n > 1, if the n-th Fibonacci number F;, is prime then either
n is prime or n = 4.

(b) Prove that if a divides b, then F;, divides Fj,.

(c) Prove that gcd(Fy, Fy) = Fyeq(ap)- This immediately implies parts (a) and (b), so if you

solve this part, you don’t have to solve the other two.

2



CS 373 Homework 5 (due 11/21/02) Fall 2002

Practice Problems
1. Let a,b,n € Z \ {0}. Assume gcd(a,b)|n. Prove the entire set of solutions to the equation
n = azx + by

is given by:
tb ta

I ={zo+ —0yo— —2 .
ot (@)Y ged(arb)

te Z}.

2. Show that in the RSA cryptosystem the decryption exponent d can be chosen such that de = 1
mod lem(p — 1,9 — 1).

3. Let (n,e) be a public RSA key. For a plaintext m € {0,1,...,n — 1}, let ¢ = m® mod n be the
corresponding ciphertext. Prove that there is a positive integer k£ such that
k
€

m® = m mod n.

For such an integer k, prove that

Is this dangerous for RSA?

4. Prove that if Alice’s RSA public exponent e is 3 and an adversary obtains Alice’s secret
exponent d, then the adversary can factor Alice’s modulus n in time polynomial in the number
of bits in n.



CS 373. Combinatorial Algorithms, Fall 2002

http://www-courses.cs.uiuc.edu/ cs373
Homework 6 (Do not hand in!)

Name:
Net ID: Alias: Uusd,1

Name:
Net ID: Alias: Uusd,i1

Name:
Net ID: Alias: Usd,i

Neatly print your name(s), NetlD(s), and the alias(es) you used for Homework O in the boxes above. Please also tell
us whether you are an undergraduatd; @it grad student, or 1-unit grad student by circlingdJ, or 1, respectively.
Staple this sheet to the top of your homework.

Required Problems

1. (10 points) Prove that SAT is still a NP-complete problem even under the following constraints: each variable
must show up once as a positive literal and once or twice as a negative literal in the whole expression. For
instance, AVB)A(AVCVD) A (AvBVCvVD) satisfies the constraints, whil&YB)A(AvCvD) A (AvBvCvD)
does not, because positive literal A appears twice.

2. (10 points) A domino is X 1 rectanble divided into two squares, with a certain number of pips(dots) in each
square. In most domino games, the players lay down dominos at either end of a single chain. Adjacent dominos
in the chain must have matching numbers. (See the figure below.)

Describe and analyze affieient algorithm, or prove that itis NP-complete, to determine wheter a given set of n
dominos can be lined up in a single chain. For example, for the sets of dominos shown below, the correct output

is TRUE.
° ° ° ° ° °
) ° ° ° ° °
° ° ° °
° ° ° o o [ ] o o L N ] ° e o
° ° o o ° ° o o
o o ° ° o o o o ° o o ° L I ]
e o|le o ° o|lo o||le o L] (] ® (IE XX AAEX X ) (] o|le o
] ] ° [ ° ° ° o [ °
® Oo|le oo ° o o||leo o ° ° ° ° eooco||oce|e ° [ )

Top: A set of nine dominos
Bottom:The entire set lined up in a single chain



3. (10 points) Prove that the following 2 problems are NP-complete. Given an undirected@raplV, E), a
subset of vertice¥’CV, and a positive integec.

(a) determine whether there is a spanning re# G whose leaves are the same\és
(b) determine whether there is a spanning fesf G whose degree of vertices are all less than k.

4. (10 points) An optimized version of Knapsack problem is defined as follows. Given a finite set of eléments

where each element of the s&tU has its own size(u) > 0 and the valug(u) > 0, maximizeA(U’) = Y, w(u)
uey’

under the condition), s(u)<B andU’cU. This problem is NP-hard. Consider the following polynomial time
uelU’

approximation algorithm. Determine the worst case approximation Réti)y = max Opt(U)/Approx(U) and
prove it.

GREEDY:
Put all the elementseU into an arrayA[i]
SortA[i] by v(u)/s(u) in a decreasing orde
APPROXIMATIONA LGORITHM: S0
V<0

Ag = G.reedy() for i « 0to NumOfElements
A, « SingleElement() if (S + SU[i]) > B)
return maxAl, A2) break

S « S+ s(U[i])

V «— V+v(U[i])
return V

SINGLEELEMENT:
Put all the elementseU into an arrayA[i]
V0
fori « 0to NumOfElements
if (s(U[i]) < B& V < v(U[i])
V « v(u[i])
return V

5. (10 points) The recursion fairy’s distant cousin, the reduction genie, shows up one day with a magical gift for
you: a box that determines in constant time whether or not a graph is 3-colorable.(A graph is 3-colorable if you
can color each of the vertices red, green, or blue, so that every edge hasedentlicolors.) The magic box
does not tell you how to color the graph, just wheter or not it can be done. Devise and analyze an algorithm to
3-color any graph ipolynomial time using the magic box.

6. (10 points) The following is an NP-hard version of PARTITION problem.

PARTITION(NP+4RD):
Given a set of n positive intege®= {ajli =0... n— 1},

minimize may >, a, 2, a.)
aeT aeS-T

whereT is a subset 08.

A polynomial time approximation algorithm is given in what follows. Determine the worst case approximation
ratio rginApprox(S)/Opt(S) and prove it.



APPROXIMATIONALGORITHM:
Sort S in an increasing orde
sl 0
2«0
fori < Oton
if s1<s2
sl sl+aq

=

else
2 — 2+ g
result « max(sl, s2)

Practice Problems

1. Construct a linear time algorithm for 2 SAT problem.

2. Assume thaP # NP. Prove that there is no polynomial time approximation algorithm for an optimized version
of Knapsack problem, which outputgl) s.t. |Opt(l) — A(l)| < K for any instance, whereK is a constant.

3. Your friend Toidi is planning to hold a party for the coming Christmas. He wants to take a picture of all the
participants including himself, but he is quiley and thus cannot take a picture of a person whom he does not
know very well. Since he has ongny friends, every participant coming to the party is athy. After a long
struggle of thought he came up with a seemingly good idea:

¢ At the beginning, he has a camera.

e A person, holding a camera, is able to take a picture of another participant whom the person knows very
well, and pass a camera to that participant.

¢ Since he does not want to waste films, everyone has to be taken a picture exactly once.

Although there can be some people whom he does not know very well, he knows completely who knows whom
well. Therefore, in theory, given a list of all the participants, he can determine if it is possible to take all the
pictures using this idea. Since it takes only linear time to take all the pictures if he is brave enough (say “Say
cheese!” N times, where N is the number of people), as a student taking CS373, you are highly expected to give
him an advice:

¢ show him an #icient algorithm to determine if it is possible to take pictures of all the participants using
his idea, given a list of people coming to the party.

e or prove that his idea is essentially facing a NP-complete problem, make him give up his idea, and give
him an dficient algorithm to practice saying “Say cheese!”:
fori < OtoN
Make him say “Say cheese!" imes

e.g., 0ops, it takes exponential time...

4. Show, given a set of numbers, that you can decide wheter it has a subset of size 3 that adds to zero in polynomial
time.



5. Given a CNF-normalized form that has at most one negative literal in each clause, constffictert algo-
rithm to solve the satisfiability problem for these clauses. For instance,

(AVBVC)A(BVA),
(AVBVC)A(BVAVD)A(AVD),
(AVB)A(BVAVC)A(CVD)

satisfy the condition, while
(AVBVC)A(BVA),

(AVBVC)A(BVAVD)A(AVD),
(AVB)A(BVAVC)A(CVD)

do not.

6. The ExactCoverByThrees problem is defined as follows: given a finit¥ setd a collectiorC of 3-element
subsets ofX, doesC contain an exact cover fof, that is, a sub-collectio@” C C where every element of
occurs in exactly one member 6f? Given that ExactCoverByThrees is NP-complete, show that the similar
problem ExactCoverByFours is also NP-complete.

7. TheLongestSimpleCycle problem is the problem of finding a simple cycle of maximum length in a graph.
Convert this to a formal definition of a decision problem and show that it is NP-complete.



CS 373 Midterm 1 Questions (October 1, 2002) Fall 2002

’Write your answers in the separate answer booklet. ‘

1. Multiple Choice: Each question below has one of the following answers.
A: ©(1) B: ©(logn) C:O(n) D:O(nlogn) E:O(n?) X:Idon’t know.

For each question, write the letter that corresponds to your answer. You do not need to
justify your answers. Each correct answer earns you 1 point. Each X earns you % point.
Each incorrect answer costs you % point. Your total score will be rounded down to an

integer. Negative scores will be rounded up to zero.

(a) What is > Lo
=17

non
(b) What is > =7
i=1"?
How many bits do you need to write 10” in binary?

)
(d) What is the solution of the recurrence T'(n) = 97'(n/3) + n?
(e) What is the solution of the recurrence T'(n) = T'(n — 2) + 27
(f) What is the solution of the recurrence T'(n) = 5T ([ %52 | —Iglgn) +mn+ 9Vlog™n _ g7
(g) What is the worst-case running time of randomized quicksort?
(h) The expected time for inserting one item into a randomized treap is O(logn). What is

the worst-case time for a sequence of n insertions into an initially empty treap?

(i) Suppose STUPIDALGORITHM produces the correct answer to some problem with proba-
bility 1/n. How many times do we have to run STUPIDALGORITHM to get the correct
answer with high probability?

(j) Suppose you correctly identify three of the possible answers to this question as obviously
wrong. If you choose one of the three remaining answers at random, each with equal
probability, what is your expected score for this question?

2. Consider the following algorithm for finding the smallest element in an unsorted array:

RANDOMMIN(A[L .. n)):
MmN <— 00

for i + 1 to n in random order
if Ali] < min
min — Ali] (%)
return min

(a) [1 point] In the worst case, how many times does RANDOMMIN execute line (x)?

(b) [3 points] What is the probability that line (*) is executed during the nth iteration of
the for loop?

(c) [6 points] What is the exact expected number of executions of line (x)? (A correct O()
bound is worth 4 points.)



CS 373 Midterm 1 Questions (October 1, 2002) Fall 2002

3. Algorithms and data structures were developed millions of years ago by the Martians, but
not quite in the same way as the recent development here on Earth. Intelligent life evolved
independently on Mars’ two moons, Phobos and Deimos.! When the two races finally met
on the surface of Mars, after thousands of Phobos-orbits? of separate philosophical, cultural,
religious, and scientific development, their disagreements over the proper structure of binary
search trees led to a bloody (or more accurately, ichorous) war, ultimately leading to the
destruction of all Martian life.

A Phobian binary search tree is a full binary tree that stores a set X of search keys. The
root of the tree stores the smallest element in X. If X has more than one element, then the
left subtree stores all the elements less than some pivot value p, and the right subtree stores
everything else. Both subtrees are nonempty Phobian binary search trees. The actual pivot
value p is never stored in the tree.

A Phobian binary search tree for the set {M, A, R,T,I,N,B,Y,S,C,H, E}.

(a) [2 points] Describe and analyze an algorithm FIND(z,7T') that returns TRUE if z is
stored in the Phobian binary search tree 7', and FALSE otherwise.

(b) [2 points] Show how to perform a rotation in a Phobian binary search tree in O(1)
time.

(c) [6 points] A Deimoid binary search tree is almost exactly the same as its Phobian
counterpart, except that the largest element is stored at the root, and both subtrees are
Deimoid binary search trees. Describe and analyze an algorithm to transform an n-node
Phobian binary search tree into a Deimoid binary search tree in O(n) time, using as
little additional space as possible.

4. Suppose we are given an array A[l..n] with the special property that A[l] > A[2] and
Aln — 1] < A[n]. We say that an element A[z] is a local minimum if it is less than or equal
to both its neighbors, or more formally, if A[z — 1] > A[z] and A[z] < Az +1]. For example,
there are five local minima in the following array:

[of7[7[2]1]3][7[5][4]7]3[8]4[8]6]9]

We can obviously find a local minimum in O(n) time by scanning through the array. Describe
and analyze an algorithm that finds a local minimum in O(logn) time. [Hint: With the given
boundary conditions, the array must have at least one local minimum. Why?]

1Greek for “fear” and “panic”, respectively. Doesn’t that make you feel better?
21000 Phobos orbits ~ 1 Earth year



CS 373 Midterm 1 Questions (October 1, 2002) Fall 2002

5. [Graduate students must answer this question.|

A common supersequence of two strings A and B is a string of minimum total length that
includes both the characters of A in order and the characters of B in order. Design and
analyze and algorithm to compute the length of the shortest common supersequence of two
strings A[1..m| and B[l..n]. For example, if the input strings are ANTHROHOPOBIOLOGICAL
and PRETERDIPLOMATICALLY, your algorithm should output 31, since a shortest common
supersequence of those two strings is PREANTHEROHODPOBIOPLOMATGICALLY. You do not need
to compute an actual supersequence, just its length. For full credit, your algorithm must run
in ©(nm) time.




CS 373 Midterm 2 Questions (November 5, 2002) Fall 2002

Write your answers in the separate answer booklet.
This is a 90-minute exam. The clock started when you got the questions.

1. Professor Quasimodo has built a device that automatically rings the bells in the tower of the
Cathédrale de Notre Dame de Paris so he can finally visit his true love Esmerelda. Every
hour exactly on the hour (when the minute hand is pointing at the 12), the device rings at
least one of the n bells in the tower. Specifically, the ith bell is rung once every ¢ hours.

For example, suppose n = 4. If Quasimodo starts his device just after midnight, then his
device rings the bells according to the following twelve-hour schedule:
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What is the amortized number of bells rung per hour, as a function of n? For full credit, give
an exact closed-form solution; a correct ©() bound is worth 5 points.

2. Let G be a directed graph, where every edge u — v has a weight w(u — v). To compute the
shortest paths from a start vertex s to every other node in the graph, the generic single-source
shortest path algorithm calls INITSSSP once and then repeatedly calls RELAX until there are
no more tense edges.

INITSSSP(s):
dist(s) < 0 RELAX(u — v):
pred(s) < NULL if dist(v) > dist(u) + w(u — v)
for all vertices v # s dist(v) « dist(u) + w(u — v)
dist(v) « oo pred(v) «— u
pred(v) < NuLL

Suppose the input graph has no negative cycles. Let v be an arbitrary vertex in the input
graph. Prove that after every call to RELAX, if dist(v) # oo, then dist(v) is the total weight
of some path from s to v.

3. Suppose we want to maintain a dynamic set of values, subject to the following operations:

e INSERT(z): Add z to the set (if it isn’t already there).

e PRINT&DELETERANGE(a, b): Print and delete every element x in the range a < x < b.
For example, if the current set is {1, 5, 3,4, 8}, then PRINT& DELETERANGE(4, 6) prints
the numbers 4 and 5 and changes the set to {1, 3, 8}.

Describe and analyze a data structure that supports these operations, each with amortized
cost O(logn).



CS 373

Midterm 2 Questions (November 5, 2002) Fall 2002

4. (a)

()

[4 pts] Describe and analyze an algorithm to compute the size of the largest connected
component of black pixels in an n x n bitmap B[l..n,1..n].

For example, given the bitmap below as input, your algorithm should return the num-
ber 9, because the largest conected black component (marked with white dots on the
right) contains nine pixels.

| [ | (] | o || | (W] |
(] | [« [] {]o/ (] |
EOEEECCE [e/m] | | [wu(m] |
IDDDIDID.‘,DDDDIDID
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EECOEC O [ [o[N[ [HO/mm[ M
([ W[ [
| [l [ IIDEPDDD

[4 pts] Design and analyze an algorithm BLACKEN(i, j) that colors the pixel B[i, j] black
and returns the size of the largest black component in the bitmap. For full credit, the
amortized running time of your algorithm (starting with an all-white bitmap) must be
as small as possible.

For example, at each step in the sequence below, we blacken the pixel marked with an X.
The largest black component is marked with white dots; the number underneath shows
the correct output of the BLACKEN algorithm.
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9 14 14 16 17

[2 pts] What is the worst-case running time of your BLACKEN algorithm?

5. [Graduate students must answer this question.|

After a grueling 373 midterm, you decide to take the bus home. Since you planned ahead, you
have a schedule that lists the times and locations of every stop of every bus in Champaign-
Urbana. Unfortunately, there isn’t a single bus that visits both your exam building and your
home; you must transfer between bus lines at least once.

Describe and analyze an algorithm to determine the sequence of bus rides that will get you
home as early as possible, assuming there are b different bus lines, and each bus stops n
times per day. Your goal is to minimize your arrival time, not the time you actually spend
travelling. Assume that the buses run exactly on schedule, that you have an accurate watch,
and that you are too tired to walk between bus stops.



CS 373 Final Exam Questions (December 16, 2002) Fall 2002

Write your answers in the separate answer booklet.
This is a 180-minute exam. The clock started when you got the questions.

1. The d-dimensional hypercube is the graph defined as follows. There are 2¢ vertices, each
labeled with a different string of d bits. Two vertices are joined by an edge if their labels

differ in exactly one bit.
|'
@ @
‘ (010)—|—fou)
© (0——19) o

The 1-dimensional, 2-dimensional, and 3-dimensional hypercubes.

(a) [8 pts] Recall that a Hamiltonian cycle passes through every vertex in a graph exactly
once. Prove that for all d > 2, the d-dimensional hypercube has a Hamiltonian cycle.

(b) [2 pts] Which hypercubes have an Eulerian circuit (a closed walk that visits every edge
exactly once)? [Hint: This is very easy.|

2. A looped tree is a weighted, directed graph built from a binary tree by adding an edge from
every leaf back to the root. Every edge has a non-negative weight. The number of nodes in

the graph is n.

e

100 373

(a) How long would it take Dijkstra’s algorithm to compute the shortest path between two
vertices u and v in a looped tree?

(b) Describe and analyze a faster algorithm.

3. Prove that (z + y)? = 2P 4+ P (mod p) for any prime number p.



CS 373 Final Exam Questions (December 16, 2002) Fall 2002

4. A palindrome is a string that reads the same forwards and backwards, like X, 373, noon,
redivider, or amanaplanacatahamayakayamahatacanalpanama. Any string can be written as a
sequence of palindromes. For example, the string bubbaseesabanana (‘Bubba sees a banana.’)
can be decomposed in several ways; for example:

bub + baseesab + anana
b+ u+ bb+ a+ sees + aba 4+ nan + a
b+ u-+ bb+ a-+ sees+ a+ b+ anana
b+u+b+b+a+s+et+e+s+a+b+a+n+a+n+a

Describe an efficient algorithm to find the minimum number of palindromes that make up
a given input string. For example, given the input string bubbaseesabanana, your algorithm
would return the number 3.

5. Your boss wants you to find a perfect hash function for mapping a known set of n items into
a table of size m. A hash function is perfect if there are no collisions; each of the n items is
mapped to a different slot in the hash table. Of course, this requires that m > n.

After cursing your 373 instructor for not teaching you about perfect hashing, you decide to
try something simple: repeatedly pick random hash functions until you find one that happens
to be perfect. A random hash function h satisfies two properties:

e Pr[h(z)

e Pr [h(z) = Z] = % for any item x and any integer 1 < i < m.

h(y)] = L for any pair of items = # y.

(a) [2 pts] Suppose you pick a random hash function h. What is the ezact expected number
of collisions, as a function of n (the number of items) and m (the size of the table)? Don’t
worry about how to resolve collisions; just count them.

(b) [2 pts] What is the ezact probability that a random hash function is perfect?

(c) [2 pts] What is the ezact expected number of different random hash functions you have
to test before you find a perfect hash function?

(d) [2 pts] What is the ezact probability that none of the first N random hash functions
you try is perfect?

(e) [2 pts] How many random hash functions do you have to test to find a perfect hash
function with high probability?

To get full credit for parts (a)—(d), give exact closed-form solutions; correct ©(-) bounds are
worth significant partial credit. Part (e) requires only a O(-) bound; an exact answer is worth
extra credit.



CS 373 Final Exam Questions (December 16, 2002) Fall 2002

6. Your friend Toidi is planning to hold a Christmas party. He wants to take a picture of all the

participants, including himself, but he is quite shy and thus cannot take a picture of a person
whom he does not know very well. Since he has only shy friends!, everyone at the party is
also shy. After thinking hard for a long time, he came up with a seemingly good idea:

e Toidi brings a disposable camera to the party.

e Anyone holding the camera can take a picture of someone they know very well, and then
pass the camera to that person.

e In order not to waste any film, every person must have their picture taken exactly once.

Although there can be some people Toidi does not know very well, he knows completely who
knows whom well. Thus, in principle, given a list of all the participants, he can determine
whether it is possible to take all the pictures using this idea. But how quickly?

Either describe an efficient algorithm to solve Toidi’s problem, or show that the problem is
NP-complete.

. The recursion fairy’s cousin, the reduction genie, shows up one day with a magical gift for
you: a box that can solve the NP-complete PARTITION problem in constant time! Given a
set of positive integers as input, the magic box can tell you in constant time it can be split
into two subsets whose total weights are equal.

For example, given the set {1,4,5,7,9} as input, the magic box cheerily yells “YES!”, because
that set can be split into {1,5,7} and {4,9}, which both add up to 13. Given the set
{1,4,5,7,8}, however, the magic box mutters a sad “Sorry, no.”

The magic box does not tell you how to partition the set, only whether or not it can be done.
Describe an algorithm to actually split a set of numbers into two subsets whose sums are
equal, in polynomial time, using this magic box.?

'Except you, of course. Unfortunately, you can’t go to the party because you’re taking a final exam. Sorry!
2Your solution to problem 4 in homework 1 does not solve this problem in polynomial time.
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